Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1991, Volume 87, Number 1, Pages 76–85 (Mi tmf5471)  

This article is cited in 20 scientific papers (total in 20 papers)

Connection between the symmetry properties of the Dirac and Maxwell equations. Conservation laws

V. M. Simulik
References:
Abstract: A family of local eight-parameter transformations that carry the massless Dirac equation into Maxwell's equations, and also connect the symmetry properties of these equations is found. It is shown that such transformations also relate the conserved quantities for the spinor and electromagnetic fields. On the basis of these connections, a new method is proposed for investigating the symmetry properties of Maxwell's equations together with a convenient method for finding the conserved quantities for the electromagnetic field. The symmetry properties of Maxwell's equations are derived from the symmetries of the massless Dirac equation, and the conservation laws for the electromagnetic field are obtained from those for the Dirac equation by replacing the spinor ψ by a definite combination of components of the electromagnetic field strengths and passage to the limit m0. A 128-dimensional invariance algebra of the free Maxwell equations in Dirac-like form is established, and 64 electromagnetic conservation laws are obtained.
Received: 17.09.1990
English version:
Theoretical and Mathematical Physics, 1991, Volume 87, Issue 1, Pages 386–393
DOI: https://doi.org/10.1007/BF01016578
Bibliographic databases:
Language: Russian
Citation: V. M. Simulik, “Connection between the symmetry properties of the Dirac and Maxwell equations. Conservation laws”, TMF, 87:1 (1991), 76–85; Theoret. and Math. Phys., 87:1 (1991), 386–393
Citation in format AMSBIB
\Bibitem{Sim91}
\by V.~M.~Simulik
\paper Connection between the symmetry properties of the Dirac and Maxwell equations. Conservation laws
\jour TMF
\yr 1991
\vol 87
\issue 1
\pages 76--85
\mathnet{http://mi.mathnet.ru/tmf5471}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1122780}
\zmath{https://zbmath.org/?q=an:1189.78007}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 87
\issue 1
\pages 386--393
\crossref{https://doi.org/10.1007/BF01016578}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991HG83500008}
Linking options:
  • https://www.mathnet.ru/eng/tmf5471
  • https://www.mathnet.ru/eng/tmf/v87/i1/p76
  • This publication is cited in the following 20 articles:
    1. V M Simulik, “The Dirac equation near centenary: a contemporary introduction to the Dirac equation consideration”, J. Phys. A: Math. Theor., 58:5 (2025), 053001  crossref
    2. Arkady L. Kholodenko, “Maxwell-Dirac Isomorphism Revisited: From Foundations of Quantum Mechanics to Geometrodynamics and Cosmology”, Universe, 9:6 (2023), 288  crossref
    3. Volodimir Simulik, Igor Gordievich, Taras Zajac, “Slightly generalized Maxwell system and longitudinal components of solution”, J. Phys.: Conf. Ser., 1416:1 (2019), 012033  crossref
    4. Michael K.-H. Kiessling, A. Shadi Tahvildar-Zadeh, “On the quantum-mechanics of a single photon”, Journal of Mathematical Physics, 59:11 (2018)  crossref
    5. Albert H. Sultanov, Valeriy K. Bagmanov, Vladimir A. Andreev, Vladimir A. Burdin, Oleg G. Morozov, Albert H. Sultanov, Anton V. Bourdine, Optical Technologies in Telecommunications 2017, 2018, 59  crossref
    6. Andrea Marini, Fabio Biancalana, Odyssey of Light in Nonlinear Optical Fibers, 2015, 507  crossref
    7. ““Problems of Theoretical Physics””, Ukr. J. Phys., 58:6 (2013), 511  crossref
    8. V.M. Simulik, I.Yu. Krivsky, I.L. Lamer, “Bosonic Symmetries, Solutions, and Conservation Laws for the Dirac Equation with Nonzero Mass”, Ukr. J. Phys., 58:6 (2013), 523  crossref
    9. Matteo Conforti, Andrea Marini, Truong X. Tran, Daniele Faccio, Fabio Biancalana, “Interaction between optical fields and their conjugates in nonlinear media”, Opt. Express, 21:25 (2013), 31239  crossref
    10. Tullio Rozzi, Davide Mencarelli, Luca Pierantoni, Electromagnetics and Network Theory and their Microwave Technology Applications, 2011, 211  crossref
    11. Tullio Rozzi, Davide Mencarelli, Luca Pierantoni, “Towards a Unified Approach to Electromagnetic Fields and Quantum Currents From Dirac Spinors”, IEEE Trans. Microwave Theory Techn., 59:10 (2011), 2587  crossref
    12. T. Rozzi, D. Mencarelli, L. Pierantoni, “Deriving Electromagnetic Fields From the Spinor Solution of the Massless Dirac Equation”, IEEE Trans. Microwave Theory Techn., 57:12 (2009), 2907  crossref
    13. V. V. VARLAMOV, “MAXWELL FIELD ON THE POINCARÉ GROUP”, Int. J. Mod. Phys. A, 20:17 (2005), 4095  crossref
    14. V.M. Simulik, I.Yu. Krivsky, “Relationship between the Maxwell and Dirac equations: Symmetries, quantization, models of atom”, Reports on Mathematical Physics, 50:3 (2002), 315  crossref
    15. V. M. Simulik, I. Yu. Krivsky, “Bosonic symmetries of the massless Dirac equation”, AACA, 8:1 (1998), 69  crossref
    16. V. M. Simulik, “A theorem on the structure of a complete set of conformal-like series of conserved quantities for massless fields”, Ukr Math J, 49:12 (1997), 1927  crossref
    17. A. G. Meshkov, “Conservation laws and Lie-B�cklund symmetry”, Russ Phys J, 38:7 (1995), 657  crossref
    18. I.Yu. Krivsky, V.M. Simulik, Z.Z. Torich, “A covariant form for the complete set of first-order electromagnetic conservation laws”, Physics Letters B, 320:1-2 (1994), 96  crossref
    19. I. Yu. Krivsky, V. M. Simulik, “Dirac equation and spin 1 representations, a connection with symmetries of the Maxwell equations”, Theoret. and Math. Phys., 90:3 (1992), 265–276  mathnet  crossref  mathscinet  isi
    20. N. P. Khvorostenko, “Longitudinal electromagnetic waves”, Soviet Physics Journal, 35:3 (1992), 223  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:901
    Full-text PDF :393
    References:86
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025