Abstract:
We prove that the number of bound states for the Hamiltonian of a system of three arbitrary particles interacting through pairwise attraction potentials on a three-dimensional lattice is finite in the cases where (1) none of the two-particle subsystems has a virtual level and (2) only one of the two-particle subsystems has a virtual level.
Citation:
S. N. Lakaev, S. M. Samatov, “Finiteness of the Discrete Spectrum of the Hamiltonian of a System of Three Arbitrary Particles on a Lattice”, TMF, 129:3 (2001), 415–431; Theoret. and Math. Phys., 129:3 (2001), 1655–1668
\Bibitem{LakSam01}
\by S.~N.~Lakaev, S.~M.~Samatov
\paper Finiteness of the Discrete Spectrum of the Hamiltonian of a System of Three Arbitrary Particles on a Lattice
\jour TMF
\yr 2001
\vol 129
\issue 3
\pages 415--431
\mathnet{http://mi.mathnet.ru/tmf546}
\crossref{https://doi.org/10.4213/tmf546}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1905067}
\zmath{https://zbmath.org/?q=an:1037.81039}
\elib{https://elibrary.ru/item.asp?id=5033833}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 129
\issue 3
\pages 1655--1668
\crossref{https://doi.org/10.1023/A:1013011300854}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173128700004}
Linking options:
https://www.mathnet.ru/eng/tmf546
https://doi.org/10.4213/tmf546
https://www.mathnet.ru/eng/tmf/v129/i3/p415
This publication is cited in the following 7 articles:
M. E. Muminov, E. M. Shermatova, “On finiteness of discrete spectrum of three-particle Schrödinger operator on a lattice”, Russian Math. (Iz. VUZ), 60:1 (2016), 22–29
Rasulov T.H., “on the Finiteness of the Discrete Spectrum of a 3 X 3 Operator Matrix”, Methods Funct. Anal. Topol., 22:1 (2016), 48–61
Yu. Kh. Eshkabilov, R. R. Kucharov, “Essential and discrete spectra of the three-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 170:3 (2012), 341–353
S. M. Tashpulatov, “Spectrum of the energy operator of a two-magnon system in the three-dimensional isotropic Heisenberg ferromagnet model with impurity”, Theoret. and Math. Phys., 162:2 (2010), 188–200
Albeverio, S, “THE ESSENTIAL AND DISCRETE SPECTRUM OF A MODEL OPERATOR ASSOCIATED TO A SYSTEM OF THREE IDENTICAL QUANTUM PARTICLES”, Reports on Mathematical Physics, 63:3 (2009), 359
Albeverio, S, “On the structure of the essential spectrum for the three-particle Schrodinger operators on lattices”, Mathematische Nachrichten, 280:7 (2007), 699
Albeverio, S, “Schrodinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Annales Henri Poincare, 5:4 (2004), 743