Abstract:
Algebras of a q oscillator and super q oscillator are obtained by contraction of quantum algebras of rank one in the limit of infinite spin. Irreducible representations are constructed.
This publication is cited in the following 35 articles:
Xin Zhang, Zhaowen Yan, “The fermion representation of the generalized phase model”, Nuclear Physics B, 1002 (2024), 116532
Vlaar B. Weston R., “A Q-Operator For Open Spin Chains i. Baxter'S Tq Relation”, J. Phys. A-Math. Theor., 53:24 (2020), 245205
Kitanine N. Nepomechie R.I. Reshetikhin N., “Quantum Integrability and Quantum Groups: a Special Issue in Memory of Petr P Kulish”, J. Phys. A-Math. Theor., 51:11 (2018), 110201
Ricardo Kullock, Danilo Latini, “Towards classical spectrum generating algebras for f-deformations”, Physics Letters A, 380:3 (2016), 327
“Osnovnye nauchnye trudy Petra Petrovicha Kulisha”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 23, Zap. nauchn. sem. POMI, 433, POMI, SPb., 2015, 8–19
Satoshi Okuda, Yutaka Yoshida, “G/G gauged WZW-matter model, Bethe Ansatz for q-boson model and Commutative Frobenius algebra”, J. High Energ. Phys., 2014:3 (2014)
V. V. Borzov, “Generalized oscillator and its coherent states”, Theoret. and Math. Phys., 153:3 (2007), 1656–1670
N. V. Tsilevich, “Quantum Inverse Scattering Method for the q-Boson Model and Symmetric Functions”, Funct. Anal. Appl., 40:3 (2006), 207–217
N. Aizawa, R. Chakrabarti, S. S. Naina Mohammed, J. Segar, “Universal T-matrix, representations of OSpq(1∕2) and little Q-Jacobi polynomials”, Journal of Mathematical Physics, 47:12 (2006)
Petr P. Kulish, Anton M. Zeitlin, “Superconformal field theory and SUSY N=1 KdV hierarchy II: the Q-operator”, Nuclear Physics B, 709:3 (2005), 578
Christian Korff, “Auxiliary matrices for the six-vertex model and the algebraic Bethe ansatz”, J. Phys. A: Math. Gen., 37:29 (2004), 7227
M. V. Karasev, E. M. Novikova, “Nonlinear Commutation Relations: Representations by Point-Supported Operators”, Math. Notes, 72:1 (2002), 48–65
Marco Rossi, Robert Weston, “A generalizedQ-operator forUqvertex models”, J. Phys. A: Math. Gen., 35:47 (2002), 10015
Yu. S. Vernov, M. N. Mnatsakanova, “Regular Representations of the Generalized Heisenberg Algebra”, Theoret. and Math. Phys., 129:2 (2001), 1494–1500
N. M. Bogolyubov, A. G. Izergin, A. L. Kitanin, A. G. Pronko, “The Probabilities of Survival and Hopping of States in the Phase Model on a Finite Lattice”, Proc. Steklov Inst. Math., 226 (1999), 29–41
DEMOSTHENES ELLINAS, PANAGIOTIS MANIADIS, “q-SYMMETRIES IN DNLS-AL CHAINS AND EXACT SOLUTIONS OF QUANTUM DIMERS”, Int. J. Mod. Phys. B, 13:26 (1999), 3087
M. Karasev, E. Novikova, “Coherent transform of the spectral problem and algebras with nonlinear commutation relations”, J Math Sci, 95:6 (1999), 2703
Michèle Irac-Astaud, Guy Rideau, “Bargmann Representations for Deformed Harmonic Oscillators”, Rev. Math. Phys., 10:08 (1998), 1061
A. Guichardet, “On the representations of a Q-oscillator algebra”, Journal of Mathematical Physics, 39:9 (1998), 4965
Yu. S. Vernov, M. N. Mnatsakanova, “Algebra of q-deformed commutators in an indefinite metric space”, Theoret. and Math. Phys., 113:3 (1997), 1497–1507