Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1991, Volume 86, Number 1, Pages 16–30 (Mi tmf5413)  

This article is cited in 29 scientific papers (total in 29 papers)

On the existence of superconductivity in the Hubbard model

N. N. Bogolyubov, V. A. Moskalenko
References:
Abstract: A generalized Wick theorem is proposed for the superconducting phase of the single-band Hubbard model, and a thermodynamic diagram technique taking into account the strong electron correlations of the system is developed. An exact Dyson equation is obtained for the single-particle Green's function and an approximate equation for the correlation twoparticle Green's function. On this basis, a dynamical system of equations that determines the superconducting phase of the Hubbard model is formulated.
Received: 02.07.1990
English version:
Theoretical and Mathematical Physics, 1991, Volume 86, Issue 1, Pages 10–19
DOI: https://doi.org/10.1007/BF01018492
Bibliographic databases:
Language: Russian
Citation: N. N. Bogolyubov, V. A. Moskalenko, “On the existence of superconductivity in the Hubbard model”, TMF, 86:1 (1991), 16–30; Theoret. and Math. Phys., 86:1 (1991), 10–19
Citation in format AMSBIB
\Bibitem{BogMos91}
\by N.~N.~Bogolyubov, V.~A.~Moskalenko
\paper On~the existence of superconductivity in the Hubbard model
\jour TMF
\yr 1991
\vol 86
\issue 1
\pages 16--30
\mathnet{http://mi.mathnet.ru/tmf5413}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1106825}
\zmath{https://zbmath.org/?q=an:0989.82510}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 86
\issue 1
\pages 10--19
\crossref{https://doi.org/10.1007/BF01018492}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991GC79000002}
Linking options:
  • https://www.mathnet.ru/eng/tmf5413
  • https://www.mathnet.ru/eng/tmf/v86/i1/p16
  • This publication is cited in the following 29 articles:
    1. I. D. Chebotar', “Systems of Strongly Correlated Electrons Interacting with Each Other and with Phonons: Diagrammatic Approach”, Surf. Engin. Appl.Electrochem., 60:1 (2024), 94  crossref
    2. V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, “The theory of nonequilibrium Anderson impurity model for strongly correlated electron systems”, Low Temperature Physics, 41:5 (2015), 401  crossref
    3. V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, I. D. Chebotar', “Diagram theory for the twofold-degenerate Anderson impurity model”, Theoret. and Math. Phys., 178:1 (2014), 115–129  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, I. D. Chebotar', “Dynamics of phonon clouds of correlated polarons”, Theoret. and Math. Phys., 179:2 (2014), 588–595  mathnet  crossref  crossref  adsnasa  isi  elib
    5. Moskalenko V.A., Dohotaru L.A., Digor D.F., Cebotari I.D., “Strong Coupling Diagrammatic Approach To the Anderson-Holstein Hamiltonian”, Proc. Rom. Acad. Ser. A-Math. Phys., 15:2 (2014), 139–145  isi
    6. Moskalenko V.A., Dohotaru L.A., Digor D.F., Cebotari I.D., “Stationary Property of the Thermodynamic Potential of the Hubbard Model in Strong Coupling Diagrammatic Approach for Superconducting State”, Low Temp. Phys., 38:10 (2012), 922–929  crossref  isi
    7. V. A. Moskalenko, L. A. Dohotaru, I. D. Chebotar', D. F. Digor, “The diagram theory for the degenerate two-orbital Hubbard model”, Theoret. and Math. Phys., 168:3 (2011), 1278–1289  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    8. V. A. Moskalenko, L. A. Dohotaru, R. Citro, “Diagram theory for the periodic Anderson model: Stationarity of the thermodynamic potential”, Theoret. and Math. Phys., 162:3 (2010), 366–382  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. Kuzemsky A.L., “Bogoliubov's Vision: Quasiaverages and Broken Symmetry to Quantum Protectorate and Emergence”, International Journal of Modern Physics B, 24:8 (2010), 835–935  crossref  adsnasa  isi
    10. Moskalenko V.A., Dohotaru L.A., “Diagrammatic analysis of the Hubbard model: Stationary property of the thermodynamic potential”, Physics of Particles and Nuclei, 41:7 (2010), 1039–1043  crossref  isi
    11. Moskalenko V.A., Dohotaru L.A., “Diagrammatic theory for periodic anderson model”, Physics of Particles and Nuclei, 41:7 (2010), 1044–1049  crossref  isi
    12. Moskalenko V.A., Dohotaru L.A., Cebotari I.D., “Diagram analysis of the Hubbard model: Stationarity property of the thermodynamic potential”, Zh Èksper Teoret Fiz, 111:1 (2010), 97–103  crossref  isi
    13. V. A. Moskalenko, P. Entel, L. A. Dohotaru, R. Citro, “Diagrammatic theory for the Anderson impurity model: Stationary property of the thermodynamic potential”, Theoret. and Math. Phys., 159:1 (2009), 551–560  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    14. V. A. Moskalenko, P. Entel, D. F. Digor, L. A. Dohotaru, R. Citro, “A diagram approach to the strong coupling in the single-impurity Anderson model”, Theoret. and Math. Phys., 155:3 (2008), 914–935  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    15. D. F. Digor, P. Entel, V. A. Moskalenko, N. M. Plakida, “Peculiarities of pair interaction in the four-band Hubbard model”, Theoret. and Math. Phys., 149:1 (2006), 1382–1392  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. Moskalenko, VA, “Strong interaction of correlated electrons with acoustical phonons using the extended Hubbard-Holstein model”, Physical Review B, 74:7 (2006), 075109  crossref  adsnasa  isi
    17. Moskalenka, VA, “Interaction of strongly correlated electrons and acoustical phonons”, Low Temperature Physics, 32:4–5 (2006), 462  crossref  adsnasa  isi
    18. Moskalenko, VA, “Strong interaction of correlated electrons with phonons”, Physics of Particles and Nuclei, 36 (2005), S100  isi
    19. Moskalenko, VA, “Strong interaction of correlated electrons with phonons: Exchange of phonon clouds by polarons”, Journal of Experimental and Theoretical Physics, 97:3 (2003), 632  crossref  adsnasa  isi
    20. Moskalenko V.A., Entel P., Marinaro M., Perkins N.B., Holtfort C., “Hopping perturbation treatment of the periodic Anderson model around the atomic limit”, Physical Review B, 63:24 (2001), 245119  crossref  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:508
    Full-text PDF :191
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025