Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1990, Volume 82, Number 2, Pages 224–241 (Mi tmf5410)  

This article is cited in 6 scientific papers (total in 6 papers)

Coordinate asymptotics of the wave function for a system of four particles free in the initial state

S. L. Yakovlev
References:
Abstract: The coordinate asymptotics of the wave function for a system of four particles in which $4\to4$ processes are taken into account is studied. The main attention is devoted to triple scattering effects. It is established that in the parts of the configuration space in which the formally constructed scattering amplitude becomes infinite, the asymptotic behavior of the wave function can be described by Fresnel type double integrals.
Received: 30.09.1988
English version:
Theoretical and Mathematical Physics, 1990, Volume 82, Issue 2, Pages 157–169
DOI: https://doi.org/10.1007/BF01079044
Bibliographic databases:
Language: Russian
Citation: S. L. Yakovlev, “Coordinate asymptotics of the wave function for a system of four particles free in the initial state”, TMF, 82:2 (1990), 224–241; Theoret. and Math. Phys., 82:2 (1990), 157–169
Citation in format AMSBIB
\Bibitem{Yak90}
\by S.~L.~Yakovlev
\paper Coordinate asymptotics of~the wave function for a~system of~four particles free in~the initial state
\jour TMF
\yr 1990
\vol 82
\issue 2
\pages 224--241
\mathnet{http://mi.mathnet.ru/tmf5410}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1048118}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 82
\issue 2
\pages 157--169
\crossref{https://doi.org/10.1007/BF01079044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990DZ44000007}
Linking options:
  • https://www.mathnet.ru/eng/tmf5410
  • https://www.mathnet.ru/eng/tmf/v82/i2/p224
  • This publication is cited in the following 6 articles:
    1. S. L. Yakovlev, “Weak asymptotics of the wave function for an $N$-particle system and asymptotic filtration”, Theoret. and Math. Phys., 206:1 (2021), 68–83  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. S. L. Yakovlev, “Asymptotic behavior of the wave function of three particles in a continuum”, Theoret. and Math. Phys., 186:1 (2016), 126–135  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. S. L. Yakovlev, “Quantum $N$-body problem: Matrix structures and equations”, Theoret. and Math. Phys., 181:1 (2014), 1317–1338  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    4. M. I. Zelikin, V. F. Borisov, “Singular Optimal Regimes in Problems of Mathematical Economics”, J Math Sci, 130:1 (2005), 4409  crossref
    5. R.Ya. Kezerashvili, “On the asymptotic behaviour of the 4 → 4 scattering wave function in the hyperspherical representation”, Physics Letters B, 334:3-4 (1994), 263  crossref
    6. A. N. Kvinikhidze, A. M. Khvedelidze, “Pair-interaction approximation in the equations of quantum field theory for a four-body system”, Theoret. and Math. Phys., 90:1 (1992), 62–74  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:282
    Full-text PDF :113
    References:46
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025