Abstract:
We consider a finite XXZ spin chain with periodic boundary conditions and an odd number of sites. It appears that for the special value of the asymmetry parameter Δ=−1/2, the ground state of this system described by the Hamiltonian Hxxz=−∑Nj=1{σxjσxj+1+σyjσyj+1−12sigmazjσzj+1} has the energy E0=−3N/2. Although the ground state is antiferromagnetic,
we can find the corresponding solution of the Bethe equations.
Specifically, we can explicitly construct a trigonometric polynomial Q(u) of degree n=(N−1)/2, whose zeros are the parameters of the Bethe wave function for the ground state of the system. As is known, this polynomial satisfies the Baxter T–Q equation. This equation also has a second independent solution corresponding to the same eigenvalue of the transfer matrix T. We use this solution to find the derivative of the ground-state energy of the XXZ chain with respect to the crossing parameter η. This derivative is directly related to one of the spin-spin correlators, which appears to be ⟨σzjσzj+1⟩=−1/2+3/2N2. In turn, this correlator gives the average number of spin strings for the ground state of the chain ⟨Nstring⟩=(3/8)(N−1)/N. All these simple formulas fail if the number N of chain sites is even.
Citation:
Yu. G. Stroganov, “XXZ Spin Chain with the Asymmetry Parameter Δ=−1/2: Evaluation of the Simplest Correlators”, TMF, 129:2 (2001), 345–359; Theoret. and Math. Phys., 129:2 (2001), 1596–1608
\Bibitem{Str01}
\by Yu.~G.~Stroganov
\paper $XXZ$ Spin Chain with the Asymmetry Parameter $\Delta=-1/2$: Evaluation of the Simplest Correlators
\jour TMF
\yr 2001
\vol 129
\issue 2
\pages 345--359
\mathnet{http://mi.mathnet.ru/tmf541}
\crossref{https://doi.org/10.4213/tmf541}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1904805}
\zmath{https://zbmath.org/?q=an:1031.82017}
\elib{https://elibrary.ru/item.asp?id=13374278}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 129
\issue 2
\pages 1596--1608
\crossref{https://doi.org/10.1023/A:1012925110210}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173055900014}
Linking options:
https://www.mathnet.ru/eng/tmf541
https://doi.org/10.4213/tmf541
https://www.mathnet.ru/eng/tmf/v129/i2/p345
This publication is cited in the following 7 articles:
Christian Hagendorf, Hjalmar Rosengren, “Nearest-Neighbour Correlation Functions for the Supersymmetric XYZ Spin Chain and Painlevé VI”, Commun. Math. Phys., 405:4 (2024)
Povolotsky A.M., “Exact Densities of Loops in O(1) Dense Loop Model and of Clusters in Critical Percolation on a Cylinder”, J. Phys. A-Math. Theor., 54:22 (2021), 22LT01
Povolotsky A.M., “Laws of Large Numbers in the Raise and Peel Model”, J. Stat. Mech.-Theory Exp., 2019, 074003
A. V. Razumov, Yu. G. Stroganov, “A possible combinatorial point for the XYZ spin chain”, Theoret. and Math. Phys., 164:2 (2010), 977–991
Bazhanov, VV, “Analytic theory of the eight-vertex model”, Nuclear Physics B, 775:3 (2007), 225
Yu. G. Stroganov, “Quasifree States in Some One-Dimensional Quantum Spin Models”, Theoret. and Math. Phys., 139:1 (2004), 542–556
F C Alcaraz, Yu G Stroganov, “The wavefunctions for the free-fermion part of the spectrum of theSUq(N) quantum spin models”, J. Phys. A: Math. Gen., 36:10 (2003), 2381