Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 129, Number 2, Pages 345–359
DOI: https://doi.org/10.4213/tmf541
(Mi tmf541)
 

This article is cited in 7 scientific papers (total in 7 papers)

$XXZ$ Spin Chain with the Asymmetry Parameter $\Delta=-1/2$: Evaluation of the Simplest Correlators

Yu. G. Stroganov

Institute for High Energy Physics
Full-text PDF (260 kB) Citations (7)
References:
Abstract: We consider a finite $XXZ$ spin chain with periodic boundary conditions and an odd number of sites. It appears that for the special value of the asymmetry parameter $\Delta=-1/2$, the ground state of this system described by the Hamiltonian $H_{xxz}=-\sum_{j=1}^{N}\bigl\{\sigma_j^{x}\sigma_{j+1}^{x}+ \sigma_j^{y}\sigma_{j+1}^{y}-\frac12sigma_j^z\sigma_{j+1}^z\bigr\}$ has the energy $E_0=-3N/2$. Although the ground state is antiferromagnetic, we can find the corresponding solution of the Bethe equations. Specifically, we can explicitly construct a trigonometric polynomial $Q(u)$ of degree $n=(N-1)/2$, whose zeros are the parameters of the Bethe wave function for the ground state of the system. As is known, this polynomial satisfies the Baxter $T$$Q$ equation. This equation also has a second independent solution corresponding to the same eigenvalue of the transfer matrix T. We use this solution to find the derivative of the ground-state energy of the $XXZ$ chain with respect to the crossing parameter $\eta$. This derivative is directly related to one of the spin-spin correlators, which appears to be $\langle\sigma_j^z\sigma_{j+1}^z\rangle=-1/2+3/2N^2$. In turn, this correlator gives the average number of spin strings for the ground state of the chain $\langle N_{\text{string}}\rangle={(3/8)(N-1)/N}$. All these simple formulas fail if the number $N$ of chain sites is even.
English version:
Theoretical and Mathematical Physics, 2001, Volume 129, Issue 2, Pages 1596–1608
DOI: https://doi.org/10.1023/A:1012925110210
Bibliographic databases:
Language: Russian
Citation: Yu. G. Stroganov, “$XXZ$ Spin Chain with the Asymmetry Parameter $\Delta=-1/2$: Evaluation of the Simplest Correlators”, TMF, 129:2 (2001), 345–359; Theoret. and Math. Phys., 129:2 (2001), 1596–1608
Citation in format AMSBIB
\Bibitem{Str01}
\by Yu.~G.~Stroganov
\paper $XXZ$ Spin Chain with the Asymmetry Parameter $\Delta=-1/2$: Evaluation of the Simplest Correlators
\jour TMF
\yr 2001
\vol 129
\issue 2
\pages 345--359
\mathnet{http://mi.mathnet.ru/tmf541}
\crossref{https://doi.org/10.4213/tmf541}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1904805}
\zmath{https://zbmath.org/?q=an:1031.82017}
\elib{https://elibrary.ru/item.asp?id=13374278}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 129
\issue 2
\pages 1596--1608
\crossref{https://doi.org/10.1023/A:1012925110210}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173055900014}
Linking options:
  • https://www.mathnet.ru/eng/tmf541
  • https://doi.org/10.4213/tmf541
  • https://www.mathnet.ru/eng/tmf/v129/i2/p345
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:435
    Full-text PDF :208
    References:41
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024