Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1989, Volume 81, Number 2, Pages 263–270 (Mi tmf5370)  

This article is cited in 12 scientific papers (total in 12 papers)

Application of Hubbard operators in the theory of magnetoelastic waves

Yu. N. Mitsai, Yu. A. Fridman
References:
Abstract: A scheme of microscopic description of magnetoelastic wavjes in the Heisenberg ferromagnets with the one-ion anisotropy of the easy plane and easy axis type is constructed. The scheme is based on the representation of spin operators in terms of the Hubbard operators. This makes it possible to take exactly into account the effects of the one-ion anisotropy and magnetoelastic interaction. For the both classes of magnets considered the dispersion equation for the magnetoelastic waves is obtained in the whole range of temperatures. It is shown that the softening of the phonon mode near the reorientation phase transition takes place at arbitrary temperatures up to the Curie point.
Received: 13.05.1988
English version:
Theoretical and Mathematical Physics, 1989, Volume 81, Issue 2, Pages 1194–1199
DOI: https://doi.org/10.1007/BF01017724
Bibliographic databases:
Language: Russian
Citation: Yu. N. Mitsai, Yu. A. Fridman, “Application of Hubbard operators in the theory of magnetoelastic waves”, TMF, 81:2 (1989), 263–270; Theoret. and Math. Phys., 81:2 (1989), 1194–1199
Citation in format AMSBIB
\Bibitem{MitFri89}
\by Yu.~N.~Mitsai, Yu.~A.~Fridman
\paper Application of~Hubbard operators in~the theory of~magnetoelastic waves
\jour TMF
\yr 1989
\vol 81
\issue 2
\pages 263--270
\mathnet{http://mi.mathnet.ru/tmf5370}
\transl
\jour Theoret. and Math. Phys.
\yr 1989
\vol 81
\issue 2
\pages 1194--1199
\crossref{https://doi.org/10.1007/BF01017724}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1989DH85000011}
Linking options:
  • https://www.mathnet.ru/eng/tmf5370
  • https://www.mathnet.ru/eng/tmf/v81/i2/p263
  • This publication is cited in the following 12 articles:
    1. E. A Yarygina, V. V Kozachek, Ya. Yu Matyunina, O. A Kosmachev, Yu. A Fridman, “DINAMIChESKIE I STATIChESKIE SVOYSTVA NEGEYZENBERGOVSKOGO ANIZOTROPNOGO ANTIFERROMAGNETIKA PRI NENULEVOY TEMPERATURE”, Žurnal èksperimentalʹnoj i teoretičeskoj fiziki, 165:1 (2024), 98  crossref
    2. O. A. Kosmachev, Ya. Yu. Matyunina, Yu. A. Fridman, “Dynamic and Static Properties of a Non-Heisenberg Ferrimagnet with Single-Ion Easy-Axis Anisotropy”, J. Exp. Theor. Phys., 135:3 (2022), 354  crossref
    3. A. V. Krivtsova, Ya. Yu. Matyunina, Yu. A. Fridman, “Non-Heisenberg Anisotropic Ferrimagnet”, J. Exp. Theor. Phys., 131:2 (2020), 302  crossref
    4. E.A. Yarygina, Ya.Yu. Matyunina, Ph.N. Klevets, Yu.A. Fridman, “Dynamic and static properties of two-sublattice anisotropic non-Heisenberg magnet”, Journal of Magnetism and Magnetic Materials, 512 (2020), 167043  crossref
    5. Lyashenko T.I. Kalita V.M. Loktev V.M., “On the Theory of the Magnetic Quantum Phase Transitions of the First Kind in Van Vleck Ising Antiferromagnet”, Low Temp. Phys., 45:1 (2019), 98–102  crossref  isi  scopus
    6. E. A. Yarygina, Ya. Yu. Matyunina, Ph. N. Klevets, Yu. A. Fridman, “Dynamic and Static Properties of a Two-Sublattice Anisotropic Non-Heisenberg Magnet”, J. Exp. Theor. Phys., 129:6 (2019), 1070  crossref
    7. A. G. Meleshko, F. N. Klevets, G. A. Gorelikov, O. A. Kosmachev, Yu. A. Fridman, “Supersolid magnetic phase in the two-dimensional Ising-like antiferromagnet with strong single-ion anisotropy”, Phys. Solid State, 59:9 (2017), 1739–1747  mathnet  mathnet  crossref  crossref
    8. Lavanov G.Yu. Kalita V.M. Ivanova I.M. Loktev V.M., “Magnetic quantum phase transitions and entropy in Van Vleck magnet”, J. Magn. Magn. Mater., 416 (2016), 466–474  crossref  isi  elib  scopus
    9. E. A. Neklyudov, F. N. Klevets, Yu. A. Fridman, “Spiral magnetic structure in non-Heisenberg magnets with an easy-axis anisotropy”, Phys. Solid State, 58:10 (2016), 1999–2004  mathnet  mathnet  crossref
    10. Gorelikov G.A. Meleshko A.G. Fridman Yu.A., “Dynamic and Static Properties of Rigidly Fixed Ultrathin Ferromagnetic Films With S=1 and Competing Anisotropies”, Low Temp. Phys., 40:5 (2014), 423–434  crossref  isi
    11. G. A. Gorelikov, Yu. A. Fridman, “Effect of mechanical boundary conditions on the dynamic and static properties of a strongly anisotropic ferromagnet”, J. Exp. Theor. Phys., 117:1 (2013), 126  crossref
    12. V. M. Kalita, I. M. Ivanova, V. M. Loktev, “Quantum effects of magnetization of an easy-axis ferromagnet with S=1”, Theoret. and Math. Phys., 173:2 (2012), 1620–1635  mathnet  crossref  crossref  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:506
    Full-text PDF :174
    References:53
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025