Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 129, Number 2, Pages 298–316
DOI: https://doi.org/10.4213/tmf537
(Mi tmf537)
 

This article is cited in 15 scientific papers (total in 15 papers)

BRST Operator for Quantum Lie Algebras and Differential Calculus on Quantum Groups

A. P. Isaeva, O. V. Ogievetskiibc

a Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics
b P. N. Lebedev Physical Institute, Russian Academy of Sciences
c CNRS – Center of Theoretical Physics
References:
Abstract: For a Hopf algebra $\mathcal A$, we define the structures of differential complexes on two dual exterior Hopf algebras: (1) an exterior extension of $\mathcal A$ and (2) an exterior extension of the dual algebra $\mathcal A^*$. The Heisenberg double of these two exterior Hopf algebras defines the differential algebra for the Cartan differential calculus on $\mathcal A$. The first differential complex is an analogue of the de Rham complex. When $\mathcal A^*$ is a universal enveloping algebra of a Lie (super)algebra, the second complex coincides with the standard complex. The differential is realized as an (anti)commutator with a BRST operator $Q$. We give a recursive relation that uniquely defines the operator $Q$. We construct the BRST and anti-BRST operators explicitly and formulate the Hodge decomposition theorem for the case of the quantum Lie algebra $U_{\mathrm q}(gl(N))$.
English version:
Theoretical and Mathematical Physics, 2001, Volume 129, Issue 2, Pages 1558–1572
DOI: https://doi.org/10.1023/A:1012839308392
Bibliographic databases:
Language: Russian
Citation: A. P. Isaev, O. V. Ogievetskii, “BRST Operator for Quantum Lie Algebras and Differential Calculus on Quantum Groups”, TMF, 129:2 (2001), 298–316; Theoret. and Math. Phys., 129:2 (2001), 1558–1572
Citation in format AMSBIB
\Bibitem{IsaOgi01}
\by A.~P.~Isaev, O.~V.~Ogievetskii
\paper BRST Operator for Quantum Lie Algebras and Differential Calculus on Quantum Groups
\jour TMF
\yr 2001
\vol 129
\issue 2
\pages 298--316
\mathnet{http://mi.mathnet.ru/tmf537}
\crossref{https://doi.org/10.4213/tmf537}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1904801}
\zmath{https://zbmath.org/?q=an:1033.58008}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 129
\issue 2
\pages 1558--1572
\crossref{https://doi.org/10.1023/A:1012839308392}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173055900010}
Linking options:
  • https://www.mathnet.ru/eng/tmf537
  • https://doi.org/10.4213/tmf537
  • https://www.mathnet.ru/eng/tmf/v129/i2/p298
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:476
    Full-text PDF :227
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024