Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1984, Volume 60, Number 3, Pages 413–422 (Mi tmf5355)  

This article is cited in 8 scientific papers (total in 8 papers)

Eigenfunctions of quadratic Hamiltonians in the Wigner representation

È. A. Akhundova, V. V. Dodonov, V. I. Man'ko
Full-text PDF (882 kB) Citations (8)
References:
Abstract: Exact solutions of the Schrödinger equation in the Wigner representation are obtained for an arbitrary time-dependent $N$-dimensional quadratic Hamiltonian. It is shown that a complete system of solutions can always be chosen in the form of products of $N$ Laguerre polynomials having arguments that are quadratic integrals of the motion of the corresponding classical problem. The generating function found for the transition probabilities between the Foek states is a multidimensional generalization of Husimi's well-known expression for an oscillator with variable frequency. The motion of a charged particle in a uniform time-dependent electromagnetic field is considered in detail as an example.
Received: 16.01.1984
English version:
Theoretical and Mathematical Physics, 1984, Volume 60, Issue 3, Pages 907–913
DOI: https://doi.org/10.1007/BF01017893
Bibliographic databases:
Language: Russian
Citation: È. A. Akhundova, V. V. Dodonov, V. I. Man'ko, “Eigenfunctions of quadratic Hamiltonians in the Wigner representation”, TMF, 60:3 (1984), 413–422; Theoret. and Math. Phys., 60:3 (1984), 907–913
Citation in format AMSBIB
\Bibitem{AkhDodMan84}
\by \`E.~A.~Akhundova, V.~V.~Dodonov, V.~I.~Man'ko
\paper Eigenfunctions of quadratic Hamiltonians in the Wigner representation
\jour TMF
\yr 1984
\vol 60
\issue 3
\pages 413--422
\mathnet{http://mi.mathnet.ru/tmf5355}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=768169}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 60
\issue 3
\pages 907--913
\crossref{https://doi.org/10.1007/BF01017893}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984AEF5000008}
Linking options:
  • https://www.mathnet.ru/eng/tmf5355
  • https://www.mathnet.ru/eng/tmf/v60/i3/p413
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024