Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1984, Volume 60, Number 3, Pages 344–355 (Mi tmf5349)  

This article is cited in 3 scientific papers (total in 4 papers)

Trace formula in general Hamiltonian mechanics

V. S. Buslaev, E. A. Nalimova
References:
Abstract: The variational equation corresponding to a fixed interval of the trajectory of a Bamiltonian system of classical dynamics generates a linear canonical differential operator. If a connection consistent with the sympleetic structure is defined on the tangent bundle of the phase space, it is possible to introduce a regularized determinant of such an operator. The trace formula expresses this determinant in terms of the Jacobian of a transformation that is determined by the motion of the classical system and acts on a space with dimension equal to the number of degrees of freedom. A connection between the relations that are obtained and the semielassical asymptotic behavior for the functional integral that describes the dynamics of the corresponding quantum system is noted.
Received: 14.10.1983
English version:
Theoretical and Mathematical Physics, 1984, Volume 60, Issue 3, Pages 863–871
DOI: https://doi.org/10.1007/BF01017887
Bibliographic databases:
Language: Russian
Citation: V. S. Buslaev, E. A. Nalimova, “Trace formula in general Hamiltonian mechanics”, TMF, 60:3 (1984), 344–355; Theoret. and Math. Phys., 60:3 (1984), 863–871
Citation in format AMSBIB
\Bibitem{BusNal84}
\by V.~S.~Buslaev, E.~A.~Nalimova
\paper Trace formula in general Hamiltonian mechanics
\jour TMF
\yr 1984
\vol 60
\issue 3
\pages 344--355
\mathnet{http://mi.mathnet.ru/tmf5349}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=768163}
\zmath{https://zbmath.org/?q=an:0598.70018}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 60
\issue 3
\pages 863--871
\crossref{https://doi.org/10.1007/BF01017887}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984AEF5000002}
Linking options:
  • https://www.mathnet.ru/eng/tmf5349
  • https://www.mathnet.ru/eng/tmf/v60/i3/p344
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:330
    Full-text PDF :121
    References:52
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024