Abstract:
The Schottky uniformisation theory is used to obtain new formulas for the characteristics
of finite-gap solutions of the KdV equation. Waive number phase velocities
and amplitudes are expressed in terms of Poincare series. Numerical results obtained
by the method proposed are presented.
Citation:
A. I. Bobenko, D. A. Kubenskii, “Qualitative analysis and calculations of finite-gap solutions of the Korteweg–de Vries equation. Automorphic approach”, TMF, 72:3 (1987), 352–360; Theoret. and Math. Phys., 72:3 (1987), 929–935
\Bibitem{BobKub87}
\by A.~I.~Bobenko, D.~A.~Kubenskii
\paper Qualitative analysis and calculations of finite-gap solutions of the Korteweg--de~Vries equation. Automorphic approach
\jour TMF
\yr 1987
\vol 72
\issue 3
\pages 352--360
\mathnet{http://mi.mathnet.ru/tmf5336}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=936383}
\zmath{https://zbmath.org/?q=an:0662.35116|0632.35067}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 72
\issue 3
\pages 929--935
\crossref{https://doi.org/10.1007/BF01018298}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987N097600003}
Linking options:
https://www.mathnet.ru/eng/tmf5336
https://www.mathnet.ru/eng/tmf/v72/i3/p352
This publication is cited in the following 9 articles:
A.R. Osborne, “Rogue waves: Classification, measurement and data analysis, and hyperfast numerical modeling”, Eur. Phys. J. Spec. Top., 185:1 (2010), 225
International Geophysics, 97, Nonlinear Ocean Waves and the Inverse Scattering Transform, 2010, 877
Alfred R. Osborne, International Geophysics, 97, Nonlinear Ocean Waves and the Inverse Scattering Transform, 2010, 353
A. R. Osborne, M. Petti, “Laboratory-generated, shallow-water surface waves: Analysis using the periodic, inverse scattering transform”, Physics of Fluids, 6:5 (1994), 1727
A. R. Osborne, “Numerical construction of nonlinear wave-train solutions of the periodic Korteweg–de Vries equation”, Phys. Rev. E, 48:1 (1993), 296
North-Holland Mathematics Studies, 167, Topics in Soliton Theory, 1991, 397
A.I. Bobenko, S.B. Kuksin, “Finite-gap periodic solutions of the KdV equation are non-degenerate”, Physics Letters A, 161:3 (1991), 274
A.R. Osborne, E. Segre, “Numerical solutions of the Korteweg-de Vries equation using the periodic scattering transform μ-representation”, Physica D: Nonlinear Phenomena, 44:3 (1990), 575
A. I. Bobenko, L. A. Bordag, “Qualitative analysis of finite-gap solutions of the Kg? equation by the automorphic approach”, J Math Sci, 50:6 (1990), 1951