Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1987, Volume 72, Number 2, Pages 163–171 (Mi tmf5319)  

This article is cited in 7 scientific papers (total in 7 papers)

Equations of gas dynamics admitting an infinite number of symmetries

A. G. Meshkov, B. B. Mikhalyaev
Full-text PDF (799 kB) Citations (7)
References:
Abstract: All the equations of state are found for which the one-dimensional gas dynamic equations possess an infinite Lie–Backlund algebra. In all these cases the gas dynamics equations are either explicitely integrable or can be presented in the Lax form. A method for constructing an infinite set of conservation laws is given.
Received: 24.03.1986
English version:
Theoretical and Mathematical Physics, 1987, Volume 72, Issue 2, Pages 795–801
DOI: https://doi.org/10.1007/BF01017103
Bibliographic databases:
Language: Russian
Citation: A. G. Meshkov, B. B. Mikhalyaev, “Equations of gas dynamics admitting an infinite number of symmetries”, TMF, 72:2 (1987), 163–171; Theoret. and Math. Phys., 72:2 (1987), 795–801
Citation in format AMSBIB
\Bibitem{MesMik87}
\by A.~G.~Meshkov, B.~B.~Mikhalyaev
\paper Equations of gas dynamics admitting an infinite number of symmetries
\jour TMF
\yr 1987
\vol 72
\issue 2
\pages 163--171
\mathnet{http://mi.mathnet.ru/tmf5319}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=915543}
\zmath{https://zbmath.org/?q=an:0632.76086}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 72
\issue 2
\pages 795--801
\crossref{https://doi.org/10.1007/BF01017103}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987M744200001}
Linking options:
  • https://www.mathnet.ru/eng/tmf5319
  • https://www.mathnet.ru/eng/tmf/v72/i2/p163
  • This publication is cited in the following 7 articles:
    1. A. G. Meshkov, V. V. Sokolov, “Integriruemye evolyutsionnye uravneniya s postoyannoi separantoi”, Ufimsk. matem. zhurn., 4:3 (2012), 104–154  mathnet
    2. Ferapontov, EV, “Reciprocal transformations of Hamiltonian operators of hydrodynamic type: Nonlocal Hamiltonian formalism for linearly degenerate systems”, Journal of Mathematical Physics, 44:3 (2003), 1150  crossref  isi
    3. A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, Springer Series in Nonlinear Dynamics, What Is Integrability?, 1991, 115  crossref
    4. S. V. Khabirov, “Nonisentropic one-dimensional gas motions constructed by means of the contact group of the nonhomogeneous Monge–Ampère equation”, Math. USSR-Sb., 71:2 (1992), 447–462  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    5. V. R. Kudashev, S. E. Sharapov, “Generalized hodograph method from the group-theoretical point of view”, Theoret. and Math. Phys., 85:2 (1990), 1155–1159  mathnet  crossref  mathscinet  zmath  isi
    6. E. V. Ferapontov, “Systems of three differential equations of hydrodynamic type with hexagonal 3-web of characteristics on the solutions”, Funct. Anal. Appl., 23:2 (1989), 151–153  mathnet  crossref  mathscinet  zmath  isi
    7. Yuji Kodama, “Exact solutions of hydrodynamic type equations having infinitely many conserved densities”, Physics Letters A, 135:3 (1989), 171  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:348
    Full-text PDF :120
    References:58
    First page:3
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025