Abstract:
All the equations of state are found for which the one-dimensional gas dynamic
equations possess an infinite Lie–Backlund algebra. In all these cases the gas dynamics
equations are either explicitely integrable or can be presented in the Lax form.
A method for constructing an infinite set of conservation laws is given.
Citation:
A. G. Meshkov, B. B. Mikhalyaev, “Equations of gas dynamics admitting an infinite number of symmetries”, TMF, 72:2 (1987), 163–171; Theoret. and Math. Phys., 72:2 (1987), 795–801
\Bibitem{MesMik87}
\by A.~G.~Meshkov, B.~B.~Mikhalyaev
\paper Equations of gas dynamics admitting an infinite number of symmetries
\jour TMF
\yr 1987
\vol 72
\issue 2
\pages 163--171
\mathnet{http://mi.mathnet.ru/tmf5319}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=915543}
\zmath{https://zbmath.org/?q=an:0632.76086}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 72
\issue 2
\pages 795--801
\crossref{https://doi.org/10.1007/BF01017103}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987M744200001}
Linking options:
https://www.mathnet.ru/eng/tmf5319
https://www.mathnet.ru/eng/tmf/v72/i2/p163
This publication is cited in the following 7 articles:
A. G. Meshkov, V. V. Sokolov, “Integriruemye evolyutsionnye uravneniya s postoyannoi separantoi”, Ufimsk. matem. zhurn., 4:3 (2012), 104–154
Ferapontov, EV, “Reciprocal transformations of Hamiltonian operators of hydrodynamic type: Nonlocal Hamiltonian formalism for linearly degenerate systems”, Journal of Mathematical Physics, 44:3 (2003), 1150
A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, Springer Series in Nonlinear Dynamics, What Is Integrability?, 1991, 115
S. V. Khabirov, “Nonisentropic one-dimensional gas motions constructed by means of the contact group of the nonhomogeneous Monge–Ampère equation”, Math. USSR-Sb., 71:2 (1992), 447–462
V. R. Kudashev, S. E. Sharapov, “Generalized hodograph method from the group-theoretical point of view”, Theoret. and Math. Phys., 85:2 (1990), 1155–1159
E. V. Ferapontov, “Systems of three differential equations of hydrodynamic type with hexagonal 3-web of characteristics on the solutions”, Funct. Anal. Appl., 23:2 (1989), 151–153
Yuji Kodama, “Exact solutions of hydrodynamic type equations having infinitely many conserved densities”, Physics Letters A, 135:3 (1989), 171