Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1987, Volume 72, Number 1, Pages 155–159 (Mi tmf5318)  

This article is cited in 5 scientific papers (total in 5 papers)

On the two-dimensional Zakharov–Shabat problem

L. V. Bogdanov
Full-text PDF (426 kB) Citations (5)
References:
Abstract: Inverse scattering problem which is a natural two-dimensional analogue of the Zakharov–Shabat problem is solved. Equations are considered which are integrable with the aid of this problem.
Received: 20.05.1986
English version:
Theoretical and Mathematical Physics, 1987, Volume 72, Issue 1, Pages 790–793
DOI: https://doi.org/10.1007/BF01035706
Bibliographic databases:
Language: Russian
Citation: L. V. Bogdanov, “On the two-dimensional Zakharov–Shabat problem”, TMF, 72:1 (1987), 155–159; Theoret. and Math. Phys., 72:1 (1987), 790–793
Citation in format AMSBIB
\Bibitem{Bog87}
\by L.~V.~Bogdanov
\paper On the two-dimensional Zakharov--Shabat problem
\jour TMF
\yr 1987
\vol 72
\issue 1
\pages 155--159
\mathnet{http://mi.mathnet.ru/tmf5318}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=910489}
\zmath{https://zbmath.org/?q=an:0639.35067}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 72
\issue 1
\pages 790--793
\crossref{https://doi.org/10.1007/BF01035706}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987M118600015}
Linking options:
  • https://www.mathnet.ru/eng/tmf5318
  • https://www.mathnet.ru/eng/tmf/v72/i1/p155
  • This publication is cited in the following 5 articles:
    1. Takayuki Tsuchida, Aristophanes Dimakis, “On a (2 + 1)-dimensional generalization of the Ablowitz–Ladik lattice and a discrete Davey–Stewartson system”, J. Phys. A: Math. Theor., 44:32 (2011), 325206  crossref
    2. Gökçe Başar, Gerald V. Dunne, “Gross-Neveu models, nonlinear Dirac equations, surfaces and strings”, J. High Energ. Phys., 2011:1 (2011)  crossref
    3. Dmitry Zakharov, “A Discrete Analogue of the Dirac Operator and the Discrete Modified Novikov–Veselov Hierarchy”, International Mathematics Research Notices, 2010:18 (2010), 3463  crossref
    4. I. A. Taimanov, “Two-dimensional Dirac operator and the theory of surfaces”, Russian Math. Surveys, 61:1 (2006), 79–159  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. I. A. Taimanov, “The Weierstrass Representation of Spheres in $\mathbb R^3$, the Willmore Numbers, and Soliton Spheres”, Proc. Steklov Inst. Math., 225 (1999), 322–343  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:578
    Full-text PDF :244
    References:80
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025