Abstract:
Using odd bases of simple finite-dimensional Lie superalgebras, supersymmetrical
Toda chains are constructed which possess an infinite set of local integrals of motion.
Citation:
V. A. Andreev, “Odd bases of Lie superalgebras and integrable equations”, TMF, 72:1 (1987), 112–119; Theoret. and Math. Phys., 72:1 (1987), 758–764
This publication is cited in the following 8 articles:
Katsushi Ito, Mingshuo Zhu, “ODE/IM correspondence and supersymmetric affine Toda field equations”, Nuclear Physics B, 985 (2022), 116004
V. V. Gribanov, V. G. Kadyshevskii, A. S. Sorin, “Hamiltonian Structures of Fermionic Two-Dimensional Toda Lattice Hierarchies”, Theoret. and Math. Phys., 146:1 (2006), 73–84
Gribanov, VV, “Fermionic one- and two-dimensional Toda lattice hierarchies and their bi-Hamiltonian structures”, Nuclear Physics B, 727:3 (2005), 564
Gribanov, VV, “Periodic supersymmetric Toda lattice hierarchy”, Czechoslovak Journal of Physics, 54:11 (2004), 1289
Gribanov, VV, “Generalized fermionic discrete Toda hierarchy”, Discrete Dynamics in Nature and Society, 2004, no. 1, 113
F. Calogero, “Book Reviews by F Calogero”, JNMP, 7:3 (2000)
L. Fehér, A. Gábor, “A Note on the Appearance of Self-Dual Yang-Mills Fields in Integrable Hierarchies”, JNMP, 7:4 (2000), 423
T Inami, H Kanno, “N=2 super W algebras and generalized N=2 super KdV heirarchies based on Lie superalgebras”, J. Phys. A: Math. Gen., 25:13 (1992), 3729