Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 129, Number 2, Pages 163–183
DOI: https://doi.org/10.4213/tmf528
(Mi tmf528)
 

This article is cited in 23 scientific papers (total in 23 papers)

Lagrangian Chains and Canonical Bäcklund Transformations

V. E. Adlera, V. G. Marikhinb, A. B. Shabatb

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
References:
Abstract: We consider Darboux transformations for operators of arbitrary order and construct the general theory of Bäcklund transformations based on the Lagrangian formalism. The dressing chain for the Boussinesq equation and its reduction are demonstrative examples for the suggested general theory. We also discuss the well-known Bäcklund transformations for classical soliton equations.
Received: 06.06.2001
English version:
Theoretical and Mathematical Physics, 2001, Volume 129, Issue 2, Pages 1448–1465
DOI: https://doi.org/10.1023/A:1012858820688
Bibliographic databases:
Language: Russian
Citation: V. E. Adler, V. G. Marikhin, A. B. Shabat, “Lagrangian Chains and Canonical Bäcklund Transformations”, TMF, 129:2 (2001), 163–183; Theoret. and Math. Phys., 129:2 (2001), 1448–1465
Citation in format AMSBIB
\Bibitem{AdlMarSha01}
\by V.~E.~Adler, V.~G.~Marikhin, A.~B.~Shabat
\paper Lagrangian Chains and Canonical B\"acklund Transformations
\jour TMF
\yr 2001
\vol 129
\issue 2
\pages 163--183
\mathnet{http://mi.mathnet.ru/tmf528}
\crossref{https://doi.org/10.4213/tmf528}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1904792}
\zmath{https://zbmath.org/?q=an:1029.37042}
\elib{https://elibrary.ru/item.asp?id=13374268}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 129
\issue 2
\pages 1448--1465
\crossref{https://doi.org/10.1023/A:1012858820688}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173055900001}
Linking options:
  • https://www.mathnet.ru/eng/tmf528
  • https://doi.org/10.4213/tmf528
  • https://www.mathnet.ru/eng/tmf/v129/i2/p163
  • This publication is cited in the following 23 articles:
    1. Ekaterina Shemyakova, “Classification of Darboux transformations for operators of the form ∂x∂y+a∂x+b∂y+c”, Illinois J. Math., 64:1 (2020)  crossref
    2. S. V. Smirnov, “Factorization of Darboux–Laplace transformations for discrete hyperbolic operators”, Theoret. and Math. Phys., 199:2 (2019), 621–636  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. Caparros Quintero A., Hernandez Heredero R., “Formal Recursion Operators of Integrable Nonevolutionary Equations and Lagrangian Systems”, J. Phys. A-Math. Theor., 51:38 (2018), 385201  crossref  mathscinet  isi  scopus
    4. G. S. Mauleshova, “The dressing chain and one-point commuting difference operators of rank 1”, Siberian Math. J., 59:5 (2018), 901–908  mathnet  crossref  crossref  isi  elib
    5. David Hobby, Ekaterina Shemyakova, “Classification of Multidimensional Darboux Transformations: First Order and Continued Type”, SIGMA, 13 (2017), 010, 20 pp.  mathnet  crossref
    6. Li S., Shemyakova E., Voronov T., “Differential Operators on the Superline, Berezinians, and Darboux Transformations”, Lett. Math. Phys., 107:9 (2017), 1689–1714  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Hietarinta J., Joshi N., Nijhoff F., “Discrete Systems and Integrability”, Discrete Systems and Integrability, Cambridge Texts in Applied Mathematics, Cambridge Univ Press, 2016, 1–445  mathscinet  zmath  isi
    8. V. G. Marikhin, “Action as an invariant of Bäcklund transformations for Lagrangian systems”, Theoret. and Math. Phys., 184:1 (2015), 953–960  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    9. A. B. Shabat, “Simmetricheskie mnogochleny i zakony sokhraneniya”, Vladikavk. matem. zhurn., 14:4 (2012), 83–94  mathnet
    10. Balakhnev M.Yu., Demskoi D.K., “Auto-Backlund Transformations and Superposition Formulas for Solutions of Drinfeld-Sokolov Systems”, Appl. Math. Comput., 219:8 (2012), 3625–3637  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    11. A. B. Shabat, Z. S. El'kanova, “Commuting differential operators”, Theoret. and Math. Phys., 162:3 (2010), 276–285  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    12. R. N. Garifullin, A. B. Shabat, “The structure of polynomial conservation laws”, Theoret. and Math. Phys., 161:3 (2009), 1590–1598  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    13. A. Shabat, Lecture Notes in Physics, 767, Integrability, 2009, 139  crossref
    14. Filipuk, GV, “The symmetric fourth Painlevé hierarchy and associated special polynomials”, Studies in Applied Mathematics, 121:2 (2008), 157  crossref  mathscinet  zmath  isi  scopus  scopus
    15. V. E. Adler, A. B. Shabat, “Dressing chain for the acoustic spectral problem”, Theoret. and Math. Phys., 149:1 (2006), 1324–1337  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. Vsevolod E. Adler, Alexey B. Shabat, “On the One Class of Hyperbolic Systems”, SIGMA, 2 (2006), 093, 17 pp.  mathnet  crossref  mathscinet  zmath
    17. Peter A. Clarkson, “Special Polynomials Associated with Rational Solutions of the Painlevé Equations and Applications to Soliton Equations”, Comput. Methods Funct. Theory, 6:2 (2006), 329  crossref
    18. S. B. Leble, “Necessary Covariance Conditions for a One-Field Lax Pair”, Theoret. and Math. Phys., 144:1 (2005), 985–994  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. F. Musso, A. B. Shabat, “Elementary Darboux Transformations and Factorization”, Theoret. and Math. Phys., 144:1 (2005), 1004–1013  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    20. A. K. Svinin, “Invariant Submanifolds of the Darboux–Kadomtsev–Petviashvili Chain and an Extension of the Discrete Kadomtsev–Petviashvili Hierarchy”, Theoret. and Math. Phys., 141:2 (2004), 1542–1561  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:772
    Full-text PDF :353
    References:96
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025