Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1984, Volume 60, Number 2, Pages 224–244 (Mi tmf5279)  

This article is cited in 15 scientific papers (total in 15 papers)

Dynamic stochasticity and quantization

B. V. Medvedev
References:
Abstract: It is shown that after quantization of a classical dynamically stochastic system 1) the spectrum can be purely discrete, 2) stationary states correspond to simple closed classical trajectories, 3) stochastically entangled motions are “pushed” upward in energy to infinity.
Received: 09.04.1984
English version:
Theoretical and Mathematical Physics, 1984, Volume 60, Issue 2, Pages 782–797
DOI: https://doi.org/10.1007/BF01018978
Bibliographic databases:
Language: Russian
Citation: B. V. Medvedev, “Dynamic stochasticity and quantization”, TMF, 60:2 (1984), 224–244; Theoret. and Math. Phys., 60:2 (1984), 782–797
Citation in format AMSBIB
\Bibitem{Med84}
\by B.~V.~Medvedev
\paper Dynamic stochasticity and quantization
\jour TMF
\yr 1984
\vol 60
\issue 2
\pages 224--244
\mathnet{http://mi.mathnet.ru/tmf5279}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=762264}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 60
\issue 2
\pages 782--797
\crossref{https://doi.org/10.1007/BF01018978}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984ACL9200006}
Linking options:
  • https://www.mathnet.ru/eng/tmf5279
  • https://www.mathnet.ru/eng/tmf/v60/i2/p224
  • This publication is cited in the following 15 articles:
    1. V. P. Gerdt, Yu. G. Palii, A. M. Khvedelidze, “Light-cone Yang–Mills mechanics: SU(2) vs. SU(3)”, Theoret. and Math. Phys., 155:1 (2008), 557–566  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Sergei G Matinyan, Berndt Müller, “Adventures of the coupled Yang–Mills oscillators: I. Semiclassical expansion”, J. Phys. A: Math. Gen., 39:1 (2006), 45  crossref
    3. Corneliu Sochichiu, “Notes on the dynamics of noncommutative lumps”, J. Phys. A: Math. Gen., 35:13 (2002), 3125  crossref
    4. B. V. Medvedev, “Hamiltonian and commutation relations”, Theoret. and Math. Phys., 122:3 (2000), 269–277  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. A.M Khvedelidze, H.-P Pavel, “On the groundstate of Yang–Mills quantum mechanics”, Physics Letters A, 267:2-3 (2000), 96  crossref
    6. I.Ya. Aref'eva, A.S. Koshelev, P.B. Medvedev, “On stable sector in supermembrane matrix model”, Nuclear Physics B, 579:1-2 (2000), 411  crossref
    7. A. M. Khvedelidze, H.-P. Pavel, G. Röpke, “Unconstrained SU(2) Yang-Mills quantum mechanics with the theta angle”, Phys. Rev. D, 61:2 (1999)  crossref
    8. K. ZAREMBO, “RENORMALIZATION OF FUNCTIONAL SCHRÖDINGER EQUATION BY BACKGROUND FIELD METHOD”, Mod. Phys. Lett. A, 13:21 (1998), 1709  crossref
    9. B. V. Medvedev, “Dynamical stochastics and spectrum”, Theoret. and Math. Phys., 109:3 (1996), 1565–1573  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. Bernd Dahmen, Bernd Raabe, “Unconstrained SU(2) and SU(3) Yang-Mills classical mechanics”, Nuclear Physics B, 384:1-2 (1992), 352  crossref
    11. J. Bartels, O. Brüning, B. Raabe, “Numerical analysis of tunneling paths in constant field SU(2) lattice gauge theory”, Z. Phys. C - Particles and Fields, 53:2 (1992), 277  crossref
    12. B. V. Medvedev, “Dynamic stochasticity and integrals of the motion”, Theoret. and Math. Phys., 79:3 (1989), 618–627  mathnet  crossref  mathscinet  isi
    13. M. A. Soloviev, “Geometry of classical mechanics with non-Abelian gauge symmetry”, Theoret. and Math. Phys., 73:1 (1987), 1019–1028  mathnet  crossref  mathscinet  isi
    14. Javier Villarroel, “Constraints in Yang-Mills classical mechanics”, Physics Letters B, 181:3-4 (1986), 321  crossref
    15. G.K. Savvidy, “Yang-Mills quantum mechanics”, Physics Letters B, 159:4-6 (1985), 325  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:503
    Full-text PDF :164
    References:101
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025