Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1989, Volume 81, Number 1, Pages 69–85 (Mi tmf5267)  

This article is cited in 18 scientific papers (total in 18 papers)

Functional self-similarity in a problem of plasma theory with electron nonlinearity

V. F. Kovalev, V. V. Pustovalov
References:
Abstract: Functional self-similarity one-dimensional inhomogeneous electron plasma under the influence of intensive electro-magnetic radiation is demonstrated. Using the group transformation of the results of the perturbation theory in the nonlinearity parameter, we find the exact and renormalization group solutions for the nonlinear structure of the electromagnetic field and analyze its spectral contents.
Received: 17.05.1988
English version:
Theoretical and Mathematical Physics, 1989, Volume 81, Issue 1, Pages 1060–1071
DOI: https://doi.org/10.1007/BF01015510
Bibliographic databases:
Language: Russian
Citation: V. F. Kovalev, V. V. Pustovalov, “Functional self-similarity in a problem of plasma theory with electron nonlinearity”, TMF, 81:1 (1989), 69–85; Theoret. and Math. Phys., 81:1 (1989), 1060–1071
Citation in format AMSBIB
\Bibitem{KovPus89}
\by V.~F.~Kovalev, V.~V.~Pustovalov
\paper Functional self-similarity in~a~problem of~plasma theory with electron nonlinearity
\jour TMF
\yr 1989
\vol 81
\issue 1
\pages 69--85
\mathnet{http://mi.mathnet.ru/tmf5267}
\transl
\jour Theoret. and Math. Phys.
\yr 1989
\vol 81
\issue 1
\pages 1060--1071
\crossref{https://doi.org/10.1007/BF01015510}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1989DE07500007}
Linking options:
  • https://www.mathnet.ru/eng/tmf5267
  • https://www.mathnet.ru/eng/tmf/v81/i1/p69
  • This publication is cited in the following 18 articles:
    1. I. I. Metelskii, V. F. Kovalev, V. Yu. Bychenkov, “Relativistic-nonlinear resonant absorption and generation of harmonics of electromagnetic radiation in an inhomogeneous plasma”, Phys. Usp., 67:5 (2024), 429–463  mathnet  crossref  crossref  adsnasa  isi
    2. I. I. Metelskii, V. F. Kovalev, V. Yu. Bychenkov, “Nonlinear Laser Radiation Absorption Due to Relativistic Plasma Resonance in an Inhomogeneous Plasma”, J. Exp. Theor. Phys., 133:2 (2021), 236  crossref
    3. I. I. Metelskii, “Relativistically Nonlinear Resonance Absorption at Small Incidence Angles of Laser Radiation on Inhomogeneous Plasma”, Bull. Lebedev Phys. Inst., 48:12 (2021), 400  crossref
    4. I. I. Metelskii, V. F. Kovalev, V. Yu. Bychenkov, “Harmonic Generation by Relativistic Plasma Resonance”, J Russ Laser Res, 40:5 (2019), 429  crossref
    5. I. I. Metelskii, V. F. Kovalev, V. Yu. Bychenkov, “Higher-order harmonic generation of laser radiation due to relativistic plasma resonance at nonrelativistic laser intensity”, Physics of Plasmas, 26:11 (2019)  crossref
    6. I. I. Metelskii, V. F. Kovalev, V. Yu. Bychenkov, “Nonlinear relativistic plasma resonance: Renormalization group approach”, Plasma Phys. Rep., 43:2 (2017), 175  crossref
    7. I. I. Metelskii, V. F. Kovalev, V. Yu. Bychenkov, “Nonlinear plasma resonance in inhomogeneous relativistic plasma”, Bull. Lebedev Phys. Inst., 43:1 (2016), 16  crossref
    8. I I Metelskii, V F Kovalev, V Yu Bychenkov, “Renormgroup algorithm for the theory of the relativistic plasma resonance”, J. Phys.: Conf. Ser., 769 (2016), 012083  crossref
    9. Yurii N. Grigoriev, Nail H. Ibragimov, Vladimir F. Kovalev, Sergey V. Meleshko, Lecture Notes in Physics, 806, Symmetries of Integro-Differential Equations, 2010, 145  crossref
    10. Nonlinear Physical Science, Approximate and Renormgroup Symmetries, 2009, 95  crossref
    11. V. F. Kovalev, D. V. Shirkov, “Renormalization-group symmetries for solutions of nonlinear boundary value problems”, Phys. Usp., 51:8 (2008), 815–830  mathnet  crossref  crossref  adsnasa  isi  elib  elib
    12. Kovalev, VF, “Renorm-group symmetry for functionals of boundary value problem solutions”, Journal of Physics A-Mathematical and General, 39:25 (2006), 8061  crossref  isi
    13. Kovalev, VF, “Approximate transformation groups and renormgroup symmetries”, Nonlinear Dynamics, 22:1 (2000), 73  crossref  isi
    14. Kovalev, VF, “Renormalization-group approach to the problem of light-beam self-focusing”, Physical Review A, 61:3 (2000), 033809  crossref  isi
    15. V. F. Kovalev, D. V. Shirkov, “Functional self-similarity and renormalization group symmetry in mathematical physics”, Theoret. and Math. Phys., 121:1 (1999), 1315–1332  mathnet  crossref  crossref  mathscinet  zmath  isi
    16. Kovalev V.F., “Computer algebra tools in construction of renormgroup symmetries”, Casc'99: Computer Algebra in Scientific Computing, 1999, 251–267  isi
    17. Vladimir F. Kovalev, Computer Algebra in Scientific Computing CASC'99, 1999, 251  crossref
    18. D. V. Shirkov, “The Bogolyubov renormalization group”, Russian Math. Surveys, 49:5 (1994), 155–176  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:395
    Full-text PDF :167
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025