Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1989, Volume 80, Number 3, Pages 452–460 (Mi tmf5257)  

This article is cited in 6 scientific papers (total in 6 papers)

Construction of linear response theory for classical systems by the nonequilibrium statistical operator method

G. O. Balabanyan
Full-text PDF (883 kB) Citations (6)
References:
Abstract: Theory of linear response to the external mechanical perturbation is formulated for classical weakly non-equilibrium systems by means of the NSO method. Comparison with the Kubo linear response theory is made. Equations for the correlation Green functions are derived and the connection with the theory constructed for the latter in [4] is established.
Received: 12.04.1988
English version:
Theoretical and Mathematical Physics, 1989, Volume 80, Issue 3, Pages 992–997
DOI: https://doi.org/10.1007/BF01016194
Bibliographic databases:
Language: Russian
Citation: G. O. Balabanyan, “Construction of linear response theory for classical systems by the nonequilibrium statistical operator method”, TMF, 80:3 (1989), 452–460; Theoret. and Math. Phys., 80:3 (1989), 992–997
Citation in format AMSBIB
\Bibitem{Bal89}
\by G.~O.~Balabanyan
\paper Construction of~linear response theory for classical systems by~the nonequilibrium statistical operator method
\jour TMF
\yr 1989
\vol 80
\issue 3
\pages 452--460
\mathnet{http://mi.mathnet.ru/tmf5257}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1026921}
\transl
\jour Theoret. and Math. Phys.
\yr 1989
\vol 80
\issue 3
\pages 992--997
\crossref{https://doi.org/10.1007/BF01016194}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1989CY79100013}
Linking options:
  • https://www.mathnet.ru/eng/tmf5257
  • https://www.mathnet.ru/eng/tmf/v80/i3/p452
  • This publication is cited in the following 6 articles:
    1. V. B. Bobrov, R. Redmer, G. Röpke, S. A. Triger, “Distribution function and conductivity of a system of charged particles in linear response theory: Kubo theory and the nonequilibrium statistical operator method”, Theoret. and Math. Phys., 86:2 (1991), 207–215  mathnet  crossref  isi
    2. G. O. Balabanyan, “Classical equilibrium generalized hydrodynamic correlation Green's functions. IV”, Theoret. and Math. Phys., 86:3 (1991), 317–326  mathnet  crossref  mathscinet  zmath  isi
    3. G. O. Balabanyan, “Construction of equations for classical equilibrium correlation Green's functions on the basis of kinetic equations. I”, Theoret. and Math. Phys., 88:2 (1991), 833–848  mathnet  crossref  mathscinet  isi
    4. G. O. Balabanyan, “Construction of equations for classical equilibrium correlation Green's functions on the basis of kinetic equations. II”, Theoret. and Math. Phys., 89:1 (1991), 1106–1119  mathnet  crossref  mathscinet  isi
    5. G. O. Balabanyan, “Classical equilibrium generalized hydrodynamic correlation Green's functions for a system of hard balls with weak interaction”, Theoret. and Math. Phys., 89:3 (1991), 1329–1342  mathnet  crossref  mathscinet  zmath  isi
    6. G. O. Balabanyan, “On the problem of the ergodic constant in the theory of classical Green's functions”, Theoret. and Math. Phys., 84:3 (1990), 996–1006  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :147
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025