Abstract:
For a system of two relativistic particles described in the Logunov–Tavkhelidze one-time approach the dependence of the quasipotential of one-boson exchange on the total energy of the system is calculated. It is shown that despite the nonlocal form of the obtained quasipotential
the three-dimensional equations for the wave function can be reduced by a partial expansion to one-dimensional equations. The influence of the energy dependence of the quasipotential on its behavior in the coordinate representation is discussed.
Citation:
V. N. Kapshai, V. I. Savrin, N. B. Skachkov, “Dependence of the quasipotential on the total energy of a two-particle system”, TMF, 69:3 (1986), 400–410; Theoret. and Math. Phys., 69:3 (1986), 1226–1233
\Bibitem{KapSavSka86}
\by V.~N.~Kapshai, V.~I.~Savrin, N.~B.~Skachkov
\paper Dependence of the quasipotential on the total energy of a~two-particle system
\jour TMF
\yr 1986
\vol 69
\issue 3
\pages 400--410
\mathnet{http://mi.mathnet.ru/tmf5239}
\transl
\jour Theoret. and Math. Phys.
\yr 1986
\vol 69
\issue 3
\pages 1226--1233
\crossref{https://doi.org/10.1007/BF01017621}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986J423400007}
Linking options:
https://www.mathnet.ru/eng/tmf5239
https://www.mathnet.ru/eng/tmf/v69/i3/p400
This publication is cited in the following 15 articles:
Yu. A. Grishechkin, V. N. Kapshai, “Coupled S-States OF Relativistic Two-Particle Systems WITH Energy-Dependent Single Boson Exchange Potentials”, Russ Phys J, 56:12 (2014), 1407
Yu. A. Grishechkin, V. N. Kapshai, “Relativistic bound state problem for two-particle systems with energy dependent one boson exchange potential”, PFMT, 2013, no. 1(14), 24–26
O. P. Solovtsova, Yu. D. Chernichenko, “The resummation $L$-factor in the relativistic quasipotential approach”, Theoret. and Math. Phys., 166:2 (2011), 194–209
V. A. Matveev, V. I. Savrin, A. N. Sisakyan, A. N. Tavkhelidze, “Relativistic Quark Models in the Quasipotential Approach”, Theoret. and Math. Phys., 132:2 (2002), 1119–1136
E. A. Dei, V. N. Kapshai, “Covariant interaction operators for a composite system ofN scalar particles”, Russ Phys J, 40:8 (1997), 721
V. N. Kapshai, E. A. Dey, G. Yu. Tyumenkov, T. A. Alferova, “Single-photon exchange quasi-potentials ofN-particle systems”, Russ Phys J, 40:9 (1997), 832
E. A. Dei, V. N. Kapshai, N. B. Skachkov, “Three-dimensional covariant one-time equations for a system of $n$ spinor particles”, Theoret. and Math. Phys., 101:1 (1994), 1207–1217
V. N. Kapshai, G. Yu. Tyumenkov, “Asymptotic behavior of the quasipotential wave function of a two-particle system”, Russ Phys J, 36:6 (1993), 595
E. A. Dei, V. N. Kapshai, “A covariant quasipotential operator for a composite system of two scaler particles”, Russ Phys J, 36:6 (1993), 604
V. N. Kapshai, G. Yu. Tyumenkov, “$(Q\bar{q}) \to \ell \widetilde{v} _\ell $ decay constant in the covariant simultaneous approach”, Soviet Physics Journal, 35:2 (1992), 185
N. A. Boikova, V. V. Dvoeglazov, Yu. N. Tyukhtyaev, R. N. Faustov, “Quasipotential in the fourth order of perturbation theory and infrared singularities”, Theoret. and Math. Phys., 89:2 (1991), 1174–1181
V. N. Kapshai, G. Yu. Tyumenkov, “Boson exchange quasipotentials for a pseudoscalar fermion—antifermion bound state”, Soviet Physics Journal, 34:7 (1991), 587
B. A. Arbuzov, E. E. Boos, V. I. Savrin, S. A. Shichanin, “Relativistic Coulomb quasipotential and new narrow resonances in systems of charged particles”, Theoret. and Math. Phys., 83:2 (1990), 457–465
A. A. Arkhipov, “One-gluon exchange approximation for the quasipotential of two-quark interaction in quantum chromodynamics”, Theoret. and Math. Phys., 83:3 (1990), 591–601
E. A. Dei, V. N. Kapshai, N. B. Skachkov, “Exact solutions of a class of quasipotential equations for a superposition of one-boson exchange quasipotentials”, Theoret. and Math. Phys., 82:2 (1990), 130–138