Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1986, Volume 69, Number 2, Pages 175–188 (Mi tmf5216)  

This article is cited in 2 scientific papers (total in 2 papers)

Evolution of solitonless wave packets in the nonlinear Schrödinger equation and the Korteweg–de Vries equation with dissipative perturbations

B. A. Malomed
References:
Abstract: The nonlinear Schrödinger equation “with attraction” and “with repulsion” (NSE($+$) and NSE($-$)) and the Korteweg–de Vries equation, and also the sine-Gordon equation are considered with small dissipative perturbations. For the case when the nonlinear and spatially inhomogeneous (diffusion) dissipations are dominant, explicit solutions are obtained that in the logarithmic approximation at sufficiently large times express the local amplitude and population number of the solitonless wave packet in terms of the initial data. For NSE(+), the singular case of a wave packet near the threshold of soliton creation is also considered.
Received: 26.11.1984
Revised: 13.04.1986
English version:
Theoretical and Mathematical Physics, 1986, Volume 69, Issue 2, Pages 1079–1088
DOI: https://doi.org/10.1007/BF01037865
Bibliographic databases:
Language: Russian
Citation: B. A. Malomed, “Evolution of solitonless wave packets in the nonlinear Schrödinger equation and the Korteweg–de Vries equation with dissipative perturbations”, TMF, 69:2 (1986), 175–188; Theoret. and Math. Phys., 69:2 (1986), 1079–1088
Citation in format AMSBIB
\Bibitem{Mal86}
\by B.~A.~Malomed
\paper Evolution of solitonless wave packets in the nonlinear Schr\"odinger equation and the
Korteweg--de~Vries equation with dissipative perturbations
\jour TMF
\yr 1986
\vol 69
\issue 2
\pages 175--188
\mathnet{http://mi.mathnet.ru/tmf5216}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=884490}
\zmath{https://zbmath.org/?q=an:0618.35098}
\transl
\jour Theoret. and Math. Phys.
\yr 1986
\vol 69
\issue 2
\pages 1079--1088
\crossref{https://doi.org/10.1007/BF01037865}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986J382700002}
Linking options:
  • https://www.mathnet.ru/eng/tmf5216
  • https://www.mathnet.ru/eng/tmf/v69/i2/p175
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:352
    Full-text PDF :121
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024