Abstract:
For the free energy functional in the theory of phase transitions an expression is obtained that takes into account the loop renormalizations in all orders with respect to the n-component order parameter and in the first order in the vertices of the functional. It is shown, in particular,
that such renormalizations cannot destroy the monotonicity of the functional and, therefore, lead to a phase transition of the first kind.
Citation:
A. A. Lisyanskii, A. E. Filippov, “Loop renormalization of the Ginzburg–Landau functional in the theory of phase transitions”, TMF, 68:3 (1986), 425–432; Theoret. and Math. Phys., 68:3 (1986), 923–928
\Bibitem{LisFil86}
\by A.~A.~Lisyanskii, A.~E.~Filippov
\paper Loop renormalization of the Ginzburg--Landau functional in the theory of phase transitions
\jour TMF
\yr 1986
\vol 68
\issue 3
\pages 425--432
\mathnet{http://mi.mathnet.ru/tmf5195}
\transl
\jour Theoret. and Math. Phys.
\yr 1986
\vol 68
\issue 3
\pages 923--928
\crossref{https://doi.org/10.1007/BF01019394}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986G881200010}
Linking options:
https://www.mathnet.ru/eng/tmf5195
https://www.mathnet.ru/eng/tmf/v68/i3/p425
This publication is cited in the following 4 articles:
A. E. Filippov, “Large-scale structure of fluctuating field near the lability boundary of a phase transition of the first kind”, Theoret. and Math. Phys., 113:3 (1997), 1564–1571
Yu. M. Ivanchenko, A. A. Lisyanskii, A. E. Filippov, “Exactly solvable model of phase transitions”, Theoret. and Math. Phys., 71:3 (1987), 649–656
A.E. Filippov, A.A. Lisyanskii, ““Purely” loop renormalizations of the Ginzburg-Landau-Wilson functional as a solution of the thermal conductivity equation”, Physics Letters A, 125:6-7 (1987), 335
Yu.M. Ivanchenko, A.A. Lisyanskii, A.E. Filippov, “Fluctuation effects in an exactly solvable model of phase transitions”, Physics Letters A, 119:2 (1986), 55