Abstract:
Trace formulas of zeroth order are obtained for a radial Schrödinger
operator with long-range potential $V(x)$ that decreases as $x\to\infty$ as the
power $x^{-\alpha}$ with $1\leqslant\alpha\leqslant 2$. These formulas relate the increment of the phase shift in the continuum to the characteristics of the discrete
spectrum and generalize Levinson's theorem to the case of slowly decreasing
potentials.
Citation:
A. A. Kvitsinskiy, “Analog of Levinson's formula for a Schrödinger operator with long-range potential”, TMF, 68:2 (1986), 244–254; Theoret. and Math. Phys., 68:2 (1986), 801–808
\Bibitem{Kvi86}
\by A.~A.~Kvitsinskiy
\paper Analog of Levinson's formula for a~Schr\"odinger operator with long-range potential
\jour TMF
\yr 1986
\vol 68
\issue 2
\pages 244--254
\mathnet{http://mi.mathnet.ru/tmf5174}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=871051}
\zmath{https://zbmath.org/?q=an:0625.35021}
\transl
\jour Theoret. and Math. Phys.
\yr 1986
\vol 68
\issue 2
\pages 801--808
\crossref{https://doi.org/10.1007/BF01035543}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986G528100008}
Linking options:
https://www.mathnet.ru/eng/tmf5174
https://www.mathnet.ru/eng/tmf/v68/i2/p244
This publication is cited in the following 7 articles:
R.O. Barrachina, “General description of few-body break-up processes at threshold”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 233:1-4 (2005), 19
P. A. Macri, R. O. Barrachina, “Threshold behavior of the Jost function for the atomic polarization potential”, Phys. Rev. A, 65:6 (2002)
L Sarkadi, K Tokési, R O Barrachina, “Electron capture to the continuum induced by dipolar interaction”, J. Phys. B: At. Mol. Opt. Phys., 33:5 (2000), 847
Alexei Rybkin, “On a trace formula of the Buslaev–Faddeev type for a long-range potential”, Journal of Mathematical Physics, 40:3 (1999), 1334
R.O. Barrachina, “Final-state interaction theory of cusp formation”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 124:2-3 (1997), 198
V V Kostrykin, A A Kvitsinsky, S P Merkuriev, “Potential scattering in constant magnetic field: Spectral asymptotics and Levinson formula”, J. Phys. A: Math. Gen., 28:12 (1995), 3493
A. A. Kvitsinskiy, “Trace formula for Schrödinger operator with Coulomb potential in three-dimensional space”, Theoret. and Math. Phys., 70:1 (1987), 72–79