Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1986, Volume 68, Number 2, Pages 163–171 (Mi tmf5167)  

This article is cited in 17 scientific papers (total in 17 papers)

Conservation laws of evolution systems

V. V. Zharinov
References:
Abstract: For evolution systems of differential equations, conserved currents, in particular trivial ones, are described in terms of their densities. A formula that can be regarded as an analog of Noether's theorem for non-Lagrangian systems is derived. An isomorphism is constructed between the space of conservation laws, i.e., the equivalence classes of the conserved currents with respect to the trivial currents, and the solution space of a certain strongly overdetermined system of linear differential equations.
Received: 31.05.1985
English version:
Theoretical and Mathematical Physics, 1986, Volume 68, Issue 2, Pages 745–751
DOI: https://doi.org/10.1007/BF01035536
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Zharinov, “Conservation laws of evolution systems”, TMF, 68:2 (1986), 163–171; Theoret. and Math. Phys., 68:2 (1986), 745–751
Citation in format AMSBIB
\Bibitem{Zha86}
\by V.~V.~Zharinov
\paper Conservation laws of evolution systems
\jour TMF
\yr 1986
\vol 68
\issue 2
\pages 163--171
\mathnet{http://mi.mathnet.ru/tmf5167}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=871045}
\zmath{https://zbmath.org/?q=an:0625.35071}
\transl
\jour Theoret. and Math. Phys.
\yr 1986
\vol 68
\issue 2
\pages 745--751
\crossref{https://doi.org/10.1007/BF01035536}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986G528100001}
Linking options:
  • https://www.mathnet.ru/eng/tmf5167
  • https://www.mathnet.ru/eng/tmf/v68/i2/p163
  • This publication is cited in the following 17 articles:
    1. Izv. Math., 87:5 (2023), 941–946  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. V. V. Zharinov, “Navier–Stokes equations, the algebraic aspect”, Theoret. and Math. Phys., 209:3 (2021), 1657–1672  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. Rosenhaus V. Shankar R., “Sub-Symmetries and Conservation Laws”, Rep. Math. Phys., 83:1 (2019), 21–48  crossref  mathscinet  isi  scopus
    4. Rosenhaus V. Shankar R., “Quasi-Noether Systems and Quasi-Lagrangians”, Symmetry-Basel, 11:8 (2019), 1008  crossref  isi
    5. V. V. Zharinov, “Lie–Poisson structures over differential algebras”, Theoret. and Math. Phys., 192:3 (2017), 1337–1349  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    6. Anco S.C., Avdonina E.D., Gainetdinova A., Galiakberova L.R., Ibragimov N.H., Wolf T., “Symmetries and Conservation Laws of the Generalized Krichever-Novikov Equation”, J. Phys. A-Math. Theor., 49:10, SI (2016), 105201  crossref  isi
    7. Rosenhaus V. Shankar R., “Second Noether theorem for quasi-Noether systems”, J. Phys. A-Math. Theor., 49:17 (2016), 175205  crossref  mathscinet  zmath  isi  scopus
    8. Stephen C. Anco, Chaudry Masood Khalique, “Conservation laws of coupled semilinear wave equations”, Int. J. Mod. Phys. B, 30:28n29 (2016), 1640004  crossref
    9. V. V. Zharinov, “Conservation laws, differential identities, and constraints of partial differential equations”, Theoret. and Math. Phys., 185:2 (2015), 1557–1581  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    10. Stephen C. Anco, Steven A. MacNaughton, Thomas Wolf, “Conservation laws and symmetries of quasilinear radial wave equations in multi-dimensions”, Journal of Mathematical Physics, 53:5 (2012)  crossref
    11. V. V. Zharinov, “Evolution systems with constraints in the form of zero-divergence conditions”, Theoret. and Math. Phys., 163:1 (2010), 401–413  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    12. M. Euler, N. Euler, S. Lundberg, “Reciprocal Bäcklund transformations of autonomous evolution equations”, Theoret. and Math. Phys., 159:3 (2009), 770–778  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    13. V. V. Zharinov, “Evolution systems on a lattice”, Theoret. and Math. Phys., 157:3 (2008), 1694–1706  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    14. Roman O. Popovych, Michael Kunzinger, Nataliya M. Ivanova, “Conservation Laws and Potential Symmetries of Linear Parabolic Equations”, Acta Appl Math, 100:2 (2008), 113  crossref
    15. N. M. Ivanova, R. O. Popovych, “Equivalence of Conservation Laws and Equivalence of Potential Systems”, Int J Theor Phys, 46:10 (2007), 2658  crossref
    16. V. V. Zharinov, “Extrinsic geometry of differential equations and Green's formula”, Math. USSR-Izv., 35:1 (1990), 37–60  mathnet  crossref  mathscinet  zmath
    17. V. V. Zharinov, “On Bäcklund correspondences”, Math. USSR-Sb., 64:1 (1989), 277–293  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:558
    Full-text PDF :210
    References:81
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025