Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1989, Volume 80, Number 2, Pages 305–312 (Mi tmf5165)  

This article is cited in 16 scientific papers (total in 16 papers)

Friedmann model of evolution of the universe in the relativistic theory of gravitation

M. A. Mestvirishvili, Yu. V. Chugreev
References:
Abstract: In the framework of RTG the uniform and isotropic in Minkowski space Universe (the Friedmann Universe) is studied in the assumption that the graviton has a nonzero rest mass. The cosmological gravitation field does not lead out of the Minkowski light cone world lines of particles. The presence of a nonzero graviton mass changes essentially the character of the evolution of the Friedmann Universe: it becomes oscillating, the infinite time exists and the density of matter is always finite and different from zero.
Received: 11.10.1988
English version:
Theoretical and Mathematical Physics, 1989, Volume 80, Issue 2, Pages 886–891
DOI: https://doi.org/10.1007/BF01016115
Bibliographic databases:
Language: Russian
Citation: M. A. Mestvirishvili, Yu. V. Chugreev, “Friedmann model of evolution of the universe in the relativistic theory of gravitation”, TMF, 80:2 (1989), 305–312; Theoret. and Math. Phys., 80:2 (1989), 886–891
Citation in format AMSBIB
\Bibitem{MesChu89}
\by M.~A.~Mestvirishvili, Yu.~V.~Chugreev
\paper Friedmann model of~evolution of~the universe in~the relativistic theory of~gravitation
\jour TMF
\yr 1989
\vol 80
\issue 2
\pages 305--312
\mathnet{http://mi.mathnet.ru/tmf5165}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1021466}
\zmath{https://zbmath.org/?q=an:0699.53083|0674.53067}
\transl
\jour Theoret. and Math. Phys.
\yr 1989
\vol 80
\issue 2
\pages 886--891
\crossref{https://doi.org/10.1007/BF01016115}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1989CW43800011}
Linking options:
  • https://www.mathnet.ru/eng/tmf5165
  • https://www.mathnet.ru/eng/tmf/v80/i2/p305
  • This publication is cited in the following 16 articles:
    1. Yu.V. Chugreev, “Is the Cyclic Model of the Universe Possible in the Relativistic Theory of Gravitation?”, VMU, 2024, no. №4_2024, 2440102–1  crossref
    2. Yu. V. Chugreev, “Is the Cyclic Model of the Universe Possible in the Relativistic Theory of Gravitation?”, Moscow Univ. Phys., 79:4 (2024), 432  crossref
    3. Yu. V. Chugreev, “Cyclic Universe in RTG: Anisotropy Problem”, Phys. Part. Nuclei Lett., 21:5 (2024), 964  crossref
    4. Yu. V. Chugreev, “The k-essence in the relativistic theory of gravitation and general relativity”, Theoret. and Math. Phys., 194:3 (2018), 439–449  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Chugreev Yu.V., “Cosmological Constraints on the Graviton Mass in Rtg”, Phys. Part. Nuclei Lett., 14:4 (2017), 539–549  crossref  isi
    6. K. V. Antipin, A. Dubikovsky, P. K. Silaev, “Some properties of the dynamics of collapse in massive and massless relativistic theories of gravity”, Theoret. and Math. Phys., 187:1 (2016), 548–558  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. Yu. V. Chugreev, “Mach's principle for cosmological solutions in relativistic theory of gravity”, Phys. Part. Nuclei Lett., 12:2 (2015), 195  crossref
    8. K. A. Modestov, Yu. V. Chugreev, “Linear perturbations on the cosmological background in the relativistic theory of gravitation: II. Appendix”, Phys. Part. Nuclei Lett., 10:4 (2013), 300  crossref
    9. K. A. Modestov, Yu. V. Chugreev, “Linear perturbations on the cosmological background in the relativistic theory of gravitation: I. Theory”, Phys. Part. Nuclei Lett., 10:4 (2013), 295  crossref
    10. Yu. V. Chugreev, “The vacuum cosmological solution is unique in the relativistic theory of gravity”, Theoret. and Math. Phys., 161:1 (2009), 1420–1423  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    11. K. A. Modestov, Yu. V. Chugreev, “The problem of stability of the homogeneous and isotropic universe in the relativistic theory of gravitation”, Phys. Part. Nuclei Lett., 6:4 (2009), 275  crossref
    12. Yu. M. Loskutov, “Evolution of a homogeneous isotropic universe, dark matter, and the absence of monopoles”, Theoret. and Math. Phys., 94:3 (1993), 358–366  mathnet  crossref  zmath  isi
    13. E. Yu. Emel'yanov, Yu. V. Chugreev, “Evolution of Friedmann universe in the relativistic theory of gravitation based on spaces of constant curvature”, Theoret. and Math. Phys., 97:3 (1993), 1409–1420  mathnet  crossref  mathscinet  zmath  isi
    14. A. A. Logunov, M. A. Mestvirishvili, Yu. V. Chugreev, “The relativistic theory of gravitation based on a space of constant curvature”, Theoret. and Math. Phys., 86:2 (1991), 111–120  mathnet  crossref  mathscinet  zmath  isi
    15. Yu. V. Chugreev, “Causality principle in the relativistic theory of gravitation”, Theoret. and Math. Phys., 88:3 (1991), 997–1003  mathnet  crossref  mathscinet  isi
    16. V. B. Tverskoi, “Nonsingular configurations of field systems in the relativistic theory of gravitation”, Theoret. and Math. Phys., 88:3 (1991), 1003–1009  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:853
    Full-text PDF :227
    References:81
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025