Abstract:
A system with infinitely many particles and Frenkel'–Kontorova potential is
studied. Solutions of the Frenkel'–Kontorova problem are found, the stability
of the stationary solutions is proved, and families of synchronous, periodic,
and conditionally periodic motions are constructed.
Citation:
L. D. Pustyl'nikov, “A dynamical system with infinitely many degrees of freedom and solution of the Frenkel'–Kontorova problem”, TMF, 68:1 (1986), 58–68; Theoret. and Math. Phys., 68:1 (1986), 673–681
\Bibitem{Pus86}
\by L.~D.~Pustyl'nikov
\paper A~dynamical system with infinitely many degrees of freedom and solution of the Frenkel'--Kontorova problem
\jour TMF
\yr 1986
\vol 68
\issue 1
\pages 58--68
\mathnet{http://mi.mathnet.ru/tmf5148}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=875180}
\transl
\jour Theoret. and Math. Phys.
\yr 1986
\vol 68
\issue 1
\pages 673--681
\crossref{https://doi.org/10.1007/BF01017796}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986G092700005}
Linking options:
https://www.mathnet.ru/eng/tmf5148
https://www.mathnet.ru/eng/tmf/v68/i1/p58
This publication is cited in the following 6 articles:
T. Kr�ger, L. D. Pustyl'nikov, S. Troubetzkoy, “The nonautonomous function-theoretic center problem”, Bol. Soc. Bras. Mat, 30:1 (1999), 1
L. D. Pustyl'nikov, “Infinite-dimensional non-linear ordinary differential equations and the KAM theory”, Russian Math. Surveys, 52:3 (1997), 551–604
L. D. Pustyl'nikov, “Poincaré models, rigorous justification of the second element of thermodynamics on the basis of mechanics, and the Fermi acceleration mechanism”, Russian Math. Surveys, 50:1 (1995), 145–189
L. D. Pustyl'nikov, “Construction of periodic solutions in an infinite system of Fermi–Pasta–Ulam ordinary differential equations, stability, and KAM theory”, Russian Math. Surveys, 50:2 (1995), 449–450
L. D. Pustyl'nikov, “On non-unique solubility and insolubility of an analytic infinite-dimensional ordinary differential equation of chain type”, Russian Math. Surveys, 50:6 (1995), 1297–1298
L. D. Pustyl'nikov, “Infinite-dimensional strange attractors and bifurcations in adynamical system with infinitely many degrees of freedom”, Theoret. and Math. Phys., 92:1 (1992), 754–758