Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 65, Number 3, Pages 368–378 (Mi tmf5144)  

This article is cited in 12 scientific papers (total in 12 papers)

Topological characteristics of the spectrum of the Schrödinger operator in a magnetic field and in a weak potential

A. S. Lyskova
References:
Abstract: A study is made of the two-dimensional Schrödinger operator $H$ in a periodic magnetic field $B(x,y)$ and in an electric field with periodic potential $V(x,y)$. It is assumed that the functions $B(x,y)$ and $V(x,y)$ are periodic with respect to some lattice $\Gamma$ in $R^2$ and that the magnetic flux through a unit cell is an integral number. The operator $H$ is represented as a direct integral over the two-dimensional torus of the reciprocal lattice of elliptic self-adjoint operators $H_{p_1,p_2}$, which possess a discrete spectrum $\lambda_j(p_1,p_2)$, $j=0,1,2,\dots$. On the basis of an exactly integrable case – the Schrödinger operator in a constant magnetic field – perturbation theory is used to investigate the typical dispersion laws $\lambda_j(p_1,p_2)$ and establish their topological characteristics (quantum numbers). A theorem is proved: In the general case, the Schrödinger operator has a countable number of dispersion laws with arbitrary quantum numbers in no way related to one another or to the flux of the external magnetic field.
Received: 03.12.1984
English version:
Theoretical and Mathematical Physics, 1985, Volume 65, Issue 3, Pages 1218–1225
DOI: https://doi.org/10.1007/BF01036130
Bibliographic databases:
Language: Russian
Citation: A. S. Lyskova, “Topological characteristics of the spectrum of the Schrödinger operator in a magnetic field and in a weak potential”, TMF, 65:3 (1985), 368–378; Theoret. and Math. Phys., 65:3 (1985), 1218–1225
Citation in format AMSBIB
\Bibitem{Lys85}
\by A.~S.~Lyskova
\paper Topological characteristics of the spectrum of the Schr\"odinger operator in a~magnetic field and in a~weak potential
\jour TMF
\yr 1985
\vol 65
\issue 3
\pages 368--378
\mathnet{http://mi.mathnet.ru/tmf5144}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=829903}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 65
\issue 3
\pages 1218--1225
\crossref{https://doi.org/10.1007/BF01036130}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985D277400005}
Linking options:
  • https://www.mathnet.ru/eng/tmf5144
  • https://www.mathnet.ru/eng/tmf/v65/i3/p368
  • This publication is cited in the following 12 articles:
    1. L. I. Danilov, “Spectrum of the Landau Hamiltonian with a periodic electric potential”, Theoret. and Math. Phys., 202:1 (2020), 41–57  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. Giuseppe De Nittis, Kyonori Gomi, Massimo Moscolari, “The geometry of (non-Abelian) Landau levels”, Journal of Geometry and Physics, 152 (2020), 103649  crossref
    3. L. I. Danilov, “O spektre dvumernogo operatora Shredingera s odnorodnym magnitnym polem i periodicheskim elektricheskim potentsialom”, Izv. IMI UdGU, 51 (2018), 3–41  mathnet  crossref  elib
    4. Gianluca Panati, Herbert Spohn, Stefan Teufel, Analysis, Modeling and Simulation of Multiscale Problems, 2006, 595  crossref
    5. Yu. P. Chuburin, “The Spectrum and Eigenfunctions of the Two-Dimensional Schrödinger Operator with a Magnetic Field”, Theoret. and Math. Phys., 134:2 (2003), 212–221  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. Bruning, J, “The spectral asymptotics of the two-dimensional Schrodinger operator with a strong magnetic field. II”, Russian Journal of Mathematical Physics, 9:4 (2002), 400  isi
    7. V.A. Geyler, “First Chern class of lattice magneto-Bloch bundles”, Reports on Mathematical Physics, 38:3 (1996), 333  crossref
    8. V. A. Geiler, V. V. Demidov, “Spectrum of three-dimensional landau operator perturbed by a periodic point potential”, Theoret. and Math. Phys., 103:2 (1995), 561–569  mathnet  crossref  mathscinet  zmath  isi
    9. O. M. Ivanov, A. G. Savinkov, “Nontrivial $U(1)$ bundles over tori and properties of many-particle systems with topological charge”, Theoret. and Math. Phys., 96:1 (1993), 806–817  mathnet  crossref  mathscinet  zmath  isi
    10. Alexandrina Nenciu, G. Nenciu, “Existence of exponentially localized Wannier functions for nonperiodic systems”, Phys. Rev. B, 47:16 (1993), 10112  crossref
    11. G. Nenciu, “Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians”, Rev. Mod. Phys., 63:1 (1991), 91  crossref
    12. J. E. Avron, A. Raveh, B. Zur, “Adiabatic quantum transport in multiply connected systems”, Rev. Mod. Phys., 60:4 (1988), 873  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:430
    Full-text PDF :147
    References:87
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025