Abstract:
Dynamical symmetry group of the relativistic Coulomb problem in the quasipotential approach is constructed. In the relativistic configurational r-representation the raising and lowering operators for the quantum numbers n and l are found. The radial wave functions corresponding to the discrete spectrum are determined by purely algebraic method.
Citation:
Sh. M. Nagiyev, “Dynamical symmetry group of the relativistic Coulomb problem in the quasipotential approach”, TMF, 80:1 (1989), 40–46; Theoret. and Math. Phys., 80:1 (1989), 697–702
\Bibitem{Nag89}
\by Sh.~M.~Nagiyev
\paper Dynamical symmetry group of the relativistic Coulomb problem in the quasipotential approach
\jour TMF
\yr 1989
\vol 80
\issue 1
\pages 40--46
\mathnet{http://mi.mathnet.ru/tmf5114}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1018553}
\transl
\jour Theoret. and Math. Phys.
\yr 1989
\vol 80
\issue 1
\pages 697--702
\crossref{https://doi.org/10.1007/BF01015307}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1989CJ81900004}
Linking options:
https://www.mathnet.ru/eng/tmf5114
https://www.mathnet.ru/eng/tmf/v80/i1/p40
This publication is cited in the following 3 articles:
Nagiyev Sh.M., Ahmadov A.I., Tarverdiyeva V.A., “Approximate Solutions to the Klein-Fock-Gordon Equation For the Sum of Coulomb and Ring-Shaped-Like Potentials”, Adv. High. Energy Phys., 2020 (2020), 1356384
E. I. Jafarov, A. M. Jafarova, S. M. Nagiyev, “Existence of a pair of new recurrence relations for the Meixner-Pollaczek polynomials”, Tbilisi Math. J., 11:3 (2018)
S.M. Nagiyev, S.I. Guliyeva, “Relativistic quantum particle in a homogeneous external field”, Physics Letters A, 373:32 (2009), 2810