Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 128, Number 3, Pages 492–514
DOI: https://doi.org/10.4213/tmf511
(Mi tmf511)
 

This article is cited in 8 scientific papers (total in 8 papers)

Lorentz-Covariant Ultradistributions, Hyperfunctions, and Analytic Functionals

M. A. Soloviev

P. N. Lebedev Physical Institute, Russian Academy of Sciences
Full-text PDF (371 kB) Citations (8)
References:
Abstract: We generalize the theory of Lorentz-covariant distributions to broader classes of functionals including ultradistributions, hyperfunctions, and analytic functionals with a tempered growth. We prove that Lorentz-covariant functionals with essential singularities can be decomposed into polynomial covariants and establish the possibility of the invariant decomposition of their carrier cones. We describe the properties of odd highly singular generalized functions. These results are used to investigate the vacuum expectation values of nonlocal quantum fields with an arbitrary high-energy behavior and to extend the spin-statistics theorem to nonlocal field theory.
Received: 15.05.2001
English version:
Theoretical and Mathematical Physics, 2001, Volume 128, Issue 3, Pages 1252–1270
DOI: https://doi.org/10.1023/A:1012368004774
Bibliographic databases:
Language: Russian
Citation: M. A. Soloviev, “Lorentz-Covariant Ultradistributions, Hyperfunctions, and Analytic Functionals”, TMF, 128:3 (2001), 492–514; Theoret. and Math. Phys., 128:3 (2001), 1252–1270
Citation in format AMSBIB
\Bibitem{Sol01}
\by M.~A.~Soloviev
\paper Lorentz-Covariant Ultradistributions, Hyperfunctions, and Analytic Functionals
\jour TMF
\yr 2001
\vol 128
\issue 3
\pages 492--514
\mathnet{http://mi.mathnet.ru/tmf511}
\crossref{https://doi.org/10.4213/tmf511}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1902856}
\zmath{https://zbmath.org/?q=an:1040.81057}
\elib{https://elibrary.ru/item.asp?id=13374392}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 128
\issue 3
\pages 1252--1270
\crossref{https://doi.org/10.1023/A:1012368004774}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172327200012}
Linking options:
  • https://www.mathnet.ru/eng/tmf511
  • https://doi.org/10.4213/tmf511
  • https://www.mathnet.ru/eng/tmf/v128/i3/p492
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:368
    Full-text PDF :192
    References:40
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024