Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 139, Number 2, Pages 276–290
DOI: https://doi.org/10.4213/tmf51
(Mi tmf51)
 

This article is cited in 21 scientific papers (total in 21 papers)

Infrared Variables for the $SU(3)$ Yang–Mills Field

T. A. Bolokhov, L. D. Faddeev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: We generalize the self-dual parameterization of the $SU(2)$ Yang–Mills field proposed by Niemi and Faddeev for describing the infrared limit of the theory to the case of the gauge group $SU(3)$. We demonstrate that the duality property intrinsic to the $SU(2)$ gauge field cannot be transferred automatically to the higher-rank group case. We interpret the algebraic structures appearing in the Lagrangian for the new compact variables in terms of the group products $SU(2)^{\otimes3}$.
Keywords: Yang–Mills field, compact variables, duality, stringlike solitons, Kirillov forms, maximal Abelian gauge.
Received: 03.06.2003
English version:
Theoretical and Mathematical Physics, 2004, Volume 139, Issue 2, Pages 679–692
DOI: https://doi.org/10.1023/B:TAMP.0000026184.25502.f8
Bibliographic databases:
Language: Russian
Citation: T. A. Bolokhov, L. D. Faddeev, “Infrared Variables for the $SU(3)$ Yang–Mills Field”, TMF, 139:2 (2004), 276–290; Theoret. and Math. Phys., 139:2 (2004), 679–692
Citation in format AMSBIB
\Bibitem{BolFad04}
\by T.~A.~Bolokhov, L.~D.~Faddeev
\paper Infrared Variables for the $SU(3)$ Yang--Mills Field
\jour TMF
\yr 2004
\vol 139
\issue 2
\pages 276--290
\mathnet{http://mi.mathnet.ru/tmf51}
\crossref{https://doi.org/10.4213/tmf51}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2084558}
\zmath{https://zbmath.org/?q=an:1178.81178}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...139..679B}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 139
\issue 2
\pages 679--692
\crossref{https://doi.org/10.1023/B:TAMP.0000026184.25502.f8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222138000007}
Linking options:
  • https://www.mathnet.ru/eng/tmf51
  • https://doi.org/10.4213/tmf51
  • https://www.mathnet.ru/eng/tmf/v139/i2/p276
  • This publication is cited in the following 21 articles:
    1. Kato S., Shibata A., Kondo K.-I., “Double-Winding Wilson Loops in Su(N) Lattice Yang-Mills Gauge Theory”, Phys. Rev. D, 102:9 (2020), 094521  crossref  mathscinet  isi
    2. Matsudo R., Shibata A., Kato S., Kondo K.-I., “How to Extract the Dominant Part of the Wilson Loop Average in Higher Representations”, Phys. Rev. D, 100:1 (2019), 014505  crossref  mathscinet  isi
    3. Nishino Sh., Matsudo R., Warschinke M., Kondo K.-I., “Magnetic Monopoles in Pure Su(2) Yang-Mills Theory With a Gauge-Invariant Mass”, Prog. Theor. Exp. Phys., 2018, no. 10, 103B04  crossref  mathscinet  isi  scopus
    4. Matthias Warschinke, Ryutaro Matsudo, Shogo Nishino, Toru Shinohara, Kei-Ichi Kondo, “Composite operator and condensate in the SU(N) Yang-Mills theory with U(N-1) stability group”, Phys. Rev. D, 97:3 (2018)  crossref
    5. R. V. Turkevich, A. A. Perov, A. P. Protogenov, E. V. Chulkov, “Electronic states with nontrivial topology in Dirac materials”, JETP Letters, 106:3 (2017), 188–198  mathnet  crossref  crossref  isi  elib
    6. Kondo K.-I., Sasago T., Shinohara T., Shibata A., Kato S., “Magnetic Monopole Versus Vortex as Gauge-Invariant Topological Objects For Quark Confinement”, Int. J. Mod. Phys. A, 32:36, SI (2017), 1747015  crossref  mathscinet  isi
    7. Matsudo R., Kondo K.-I., Phys. Rev. D, 94:4 (2016), 045004  crossref  mathscinet  isi  elib  scopus
    8. Kei-Ichi Kondo, Seikou Kato, Akihiro Shibata, Toru Shinohara, “Quark confinement: Dual superconductor picture based on a non-Abelian Stokes theorem and reformulations of Yang–Mills theory”, Physics Reports, 579 (2015), 1  crossref
    9. Protogenov A.P., Chulkov E.V., Teo J.C.Y., “Topological Phase States of the Su(3) QCD”, Physics and Mathematics of Nonlinear Phenomena 2013, Journal of Physics Conference Series, 482, IOP Publishing Ltd, 2014, 012035  crossref  isi  scopus  scopus
    10. M. P. Kisielowski, “New Faddeev–Niemi-type variables for the static Yang–Mills theory”, Theoret. and Math. Phys., 176:2 (2013), 1016–1043  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. Evslin J., Giacomelli S., Konishi K., Michelini A., “Nonabelian Faddeev-Niemi decomposition of the SU(3) Yang-Mills theory”, Journal of High Energy Physics, 2011, no. 6, 094  crossref  mathscinet  zmath  isi  scopus  scopus
    12. Kondo K.-I., “Gauge-invariant magnetic monopole dominance in quark confinement”, Nuclear Phys A, 844 (2010), 109C–114C  crossref  isi  scopus  scopus
    13. Shibata A., Kondo K.-I., Shinohara T., “The exact decomposition of gauge variables in lattice Yang-Mills theory”, Phys Lett B, 691:2 (2010), 91–98  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    14. Novozhilov, V, “Chiral Parametrization of QCD Vector Field in Su(3)”, Modern Physics Letters A, 23:39 (2008), 3285  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    15. Kondo, KI, “New descriptions of lattice SU(N) Yang-Mills theory towards quark confinement”, Physics Letters B, 669:1 (2008), 107  crossref  adsnasa  isi  elib  scopus  scopus
    16. Faddeev L.D., “Knots as Possible Excitations of the Quantum Yang-Mills Fields”, Quantum Field Theory and Beyond - Essays in Honor of Wolfhart Zimmermann, 2008, 156–166  crossref  mathscinet  zmath  adsnasa  isi
    17. Faddeev L.D., “Knots as Possible Excitations of the Quantum Yang-Mills Fields”, Statistical Physics, High Energy, Condensed Matter and Mathematical Physics, 2008, 18–28  crossref  zmath  adsnasa  isi  scopus
    18. A. P. Protogenov, V. A. Verbus, “Decomposition of variables and duality in non-Abelian models”, Theoret. and Math. Phys., 151:3 (2007), 863–868  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. A. P. Protogenov, “Knots and links in the order parameter distributions of strongly correlated systems”, Phys. Usp., 49:7 (2006), 667–691  mathnet  crossref  crossref  adsnasa  isi  elib  elib
    20. L. D. Faddeev, “Notes on divergences and dimensional transmutation in Yang–Mills theory”, Theoret. and Math. Phys., 148:1 (2006), 986–994  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:658
    Full-text PDF :314
    References:82
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025