Abstract:
We generalize the self-dual parameterization of the $SU(2)$ Yang–Mills field proposed by Niemi and Faddeev for describing the infrared limit of the theory to the case of the gauge group $SU(3)$. We demonstrate that the duality property intrinsic to the $SU(2)$ gauge field cannot be transferred automatically to the higher-rank group case. We interpret the algebraic structures appearing in the Lagrangian for the new compact variables in terms of the group products $SU(2)^{\otimes3}$.
Citation:
T. A. Bolokhov, L. D. Faddeev, “Infrared Variables for the $SU(3)$ Yang–Mills Field”, TMF, 139:2 (2004), 276–290; Theoret. and Math. Phys., 139:2 (2004), 679–692
This publication is cited in the following 21 articles:
Kato S., Shibata A., Kondo K.-I., “Double-Winding Wilson Loops in Su(N) Lattice Yang-Mills Gauge Theory”, Phys. Rev. D, 102:9 (2020), 094521
Matsudo R., Shibata A., Kato S., Kondo K.-I., “How to Extract the Dominant Part of the Wilson Loop Average in Higher Representations”, Phys. Rev. D, 100:1 (2019), 014505
Nishino Sh., Matsudo R., Warschinke M., Kondo K.-I., “Magnetic Monopoles in Pure Su(2) Yang-Mills Theory With a Gauge-Invariant Mass”, Prog. Theor. Exp. Phys., 2018, no. 10, 103B04
Matthias Warschinke, Ryutaro Matsudo, Shogo Nishino, Toru Shinohara, Kei-Ichi Kondo, “Composite operator and condensate in the
SU(N)
Yang-Mills theory with
U(N-1)
stability group”, Phys. Rev. D, 97:3 (2018)
R. V. Turkevich, A. A. Perov, A. P. Protogenov, E. V. Chulkov, “Electronic states with nontrivial topology in Dirac materials”, JETP Letters, 106:3 (2017), 188–198
Kondo K.-I., Sasago T., Shinohara T., Shibata A., Kato S., “Magnetic Monopole Versus Vortex as Gauge-Invariant Topological Objects For Quark Confinement”, Int. J. Mod. Phys. A, 32:36, SI (2017), 1747015
Matsudo R., Kondo K.-I., Phys. Rev. D, 94:4 (2016), 045004
Kei-Ichi Kondo, Seikou Kato, Akihiro Shibata, Toru Shinohara, “Quark confinement: Dual superconductor picture based on a non-Abelian Stokes theorem and reformulations of Yang–Mills theory”, Physics Reports, 579 (2015), 1
Protogenov A.P., Chulkov E.V., Teo J.C.Y., “Topological Phase States of the Su(3) QCD”, Physics and Mathematics of Nonlinear Phenomena 2013, Journal of Physics Conference Series, 482, IOP Publishing Ltd, 2014, 012035
M. P. Kisielowski, “New Faddeev–Niemi-type variables for the static Yang–Mills theory”, Theoret. and Math. Phys., 176:2 (2013), 1016–1043
Evslin J., Giacomelli S., Konishi K., Michelini A., “Nonabelian Faddeev-Niemi decomposition of the SU(3) Yang-Mills theory”, Journal of High Energy Physics, 2011, no. 6, 094
Kondo K.-I., “Gauge-invariant magnetic monopole dominance in quark confinement”, Nuclear Phys A, 844 (2010), 109C–114C
Shibata A., Kondo K.-I., Shinohara T., “The exact decomposition of gauge variables in lattice Yang-Mills theory”, Phys Lett B, 691:2 (2010), 91–98
Novozhilov, V, “Chiral Parametrization of QCD Vector Field in Su(3)”, Modern Physics Letters A, 23:39 (2008), 3285
Kondo, KI, “New descriptions of lattice SU(N) Yang-Mills theory towards quark confinement”, Physics Letters B, 669:1 (2008), 107
Faddeev L.D., “Knots as Possible Excitations of the Quantum Yang-Mills Fields”, Quantum Field Theory and Beyond - Essays in Honor of Wolfhart Zimmermann, 2008, 156–166
Faddeev L.D., “Knots as Possible Excitations of the Quantum Yang-Mills Fields”, Statistical Physics, High Energy, Condensed Matter and Mathematical Physics, 2008, 18–28
A. P. Protogenov, V. A. Verbus, “Decomposition of variables and duality in non-Abelian models”, Theoret. and Math. Phys., 151:3 (2007), 863–868
A. P. Protogenov, “Knots and links in the order parameter distributions of strongly correlated systems”, Phys. Usp., 49:7 (2006), 667–691
L. D. Faddeev, “Notes on divergences and dimensional transmutation in Yang–Mills theory”, Theoret. and Math. Phys., 148:1 (2006), 986–994