Abstract:
The low-energy asymptotic behavior is found for the phase shifts and scattering
amplitudes in the case of central potentials which decrease at infinity as
$n/r+ar^{-\alpha}$, $\alpha>1$.
Citation:
A. A. Kvitsinskiy, “Scattering at low energies by potentials containing power-law corrections to the Coulomb interaction”, TMF, 65:2 (1985), 226–237; Theoret. and Math. Phys., 65:2 (1985), 1123–1131
\Bibitem{Kvi85}
\by A.~A.~Kvitsinskiy
\paper Scattering at low energies by potentials containing power-law corrections to the Coulomb interaction
\jour TMF
\yr 1985
\vol 65
\issue 2
\pages 226--237
\mathnet{http://mi.mathnet.ru/tmf5092}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=823664}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 65
\issue 2
\pages 1123--1131
\crossref{https://doi.org/10.1007/BF01017936}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985C929000007}
Linking options:
https://www.mathnet.ru/eng/tmf5092
https://www.mathnet.ru/eng/tmf/v65/i2/p226
This publication is cited in the following 6 articles:
V. V. Pupyshev, “Two-dimensional low-energy scattering of a quantum particle in the summed field of Coulomb and power-law potentials”, Theoret. and Math. Phys., 203:2 (2020), 673–690
Pupyshev, VV, “Low-energy expansions in nuclear physics”, Physics of Particles and Nuclei, 28:6 (1997), 586
V V Kostrykin, A A Kvitsinsky, S P Merkuriev, “Potential scattering in constant magnetic field: Spectral asymptotics and Levinson formula”, J. Phys. A: Math. Gen., 28:12 (1995), 3493
C. Chandler, “The Coulomb problem in nonrelativistic scattering theory”, Nuclear Physics A, 463:1-2 (1987), 181