Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 128, Number 3, Pages 446–460
DOI: https://doi.org/10.4213/tmf508
(Mi tmf508)
 

First-Quantized Fermions in Compact Dimensions

A. V. Marshakovab

a P. N. Lebedev Physical Institute, Russian Academy of Sciences
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
References:
Abstract: We discuss a path integral representation for fermionic particles and strings in the spirit of V. Ya. Fainberg and the author [1], [2]. We concentrate on the problems arising when some target-space dimensions are compact. We consider the partition function for a fermionic particle at a finite temperature or in compact time in detail as an example. We demonstrate that a self-consistent definition of the path integral generally requires introducing nonvanishing background Wilson loops and that modulo some common problems for real fermions in the Grassmannian formulation, these loops can be interpreted as condensates of world-line fermions. Properties of the corresponding string-theory path integrals are also discussed.
Received: 20.04.2001
English version:
Theoretical and Mathematical Physics, 2001, Volume 128, Issue 3, Pages 1213–1224
DOI: https://doi.org/10.1023/A:1012311919795
Bibliographic databases:
Language: Russian
Citation: A. V. Marshakov, “First-Quantized Fermions in Compact Dimensions”, TMF, 128:3 (2001), 446–460; Theoret. and Math. Phys., 128:3 (2001), 1213–1224
Citation in format AMSBIB
\Bibitem{Mar01}
\by A.~V.~Marshakov
\paper First-Quantized Fermions in Compact Dimensions
\jour TMF
\yr 2001
\vol 128
\issue 3
\pages 446--460
\mathnet{http://mi.mathnet.ru/tmf508}
\crossref{https://doi.org/10.4213/tmf508}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1902853}
\zmath{https://zbmath.org/?q=an:1040.81076}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 128
\issue 3
\pages 1213--1224
\crossref{https://doi.org/10.1023/A:1012311919795}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172327200009}
Linking options:
  • https://www.mathnet.ru/eng/tmf508
  • https://doi.org/10.4213/tmf508
  • https://www.mathnet.ru/eng/tmf/v128/i3/p446
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:386
    Full-text PDF :211
    References:86
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024