Abstract:
For the two-dimensional nonlinear sigma model on the homogeneous space Sp(2)/SU(2) (Berger manifold) the method of sectional curvatures is used to find the
Gell–Mann–Low β function in the single-loop approximation. The result indicates
that the model is an asymptotically free renormalizable nonlinear model.
Citation:
A. M. Gavrilik, “Gell–Mann–Low function of the chiral model on the homogeneous berger space”, TMF, 65:1 (1985), 155–160; Theoret. and Math. Phys., 65:1 (1985), 1075–1078
\Bibitem{Gav85}
\by A.~M.~Gavrilik
\paper Gell--Mann--Low function of the chiral model on the homogeneous berger space
\jour TMF
\yr 1985
\vol 65
\issue 1
\pages 155--160
\mathnet{http://mi.mathnet.ru/tmf5071}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=822220}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 65
\issue 1
\pages 1075--1078
\crossref{https://doi.org/10.1007/BF01028643}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985C731200015}
Linking options:
https://www.mathnet.ru/eng/tmf5071
https://www.mathnet.ru/eng/tmf/v65/i1/p155
This publication is cited in the following 1 articles:
Alexandre M. Gavrilik, Andriy V. Nazarenko, “Scaling Behavior and Phases of Nonlinear Sigma Model on Real Stiefel Manifolds Near Two Dimensions”, Universe, 11:4 (2025), 114