Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 128, Number 3, Pages 409–421
DOI: https://doi.org/10.4213/tmf505
(Mi tmf505)
 

This article is cited in 2 scientific papers (total in 2 papers)

Conformally Invariant Regularization and Skeleton Expansions in Gauge Theory

V. N. Zaikina, M. Ya. Pal'chikb

a P. N. Lebedev Physical Institute, Russian Academy of Sciences
b Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences
Full-text PDF (228 kB) Citations (2)
References:
Abstract: We consider a conformally invariant regularization of an Abelian gauge theory in an Euclidean space of even dimension $D\geq4$ and regularized skeleton expansions for vertices and higher Green's functions. We set the respective regularized fields $A^\varepsilon_\mu$ and $j^\varepsilon_\mu$ with the scaling dimensions $l^\varepsilon_A=1-\varepsilon$, and $l^\varepsilon_j=D-1+\varepsilon$ into correspondence to the gauge field $A_\mu$ and Euclidean current $j_\mu$. We postulate special rules for the limiting transition $\varepsilon\to0$. These rules are different for the transversal and longitudinal components of the field $A^\varepsilon_\mu$ and the current $j^\varepsilon_\mu$. We show that in the limit $\varepsilon\to0$, there appear conformally invariant fields $A_\mu$ and $j_\mu$ each of which is transformed by a direct sum of two irreducible representations of the conformal group. Removing the regularization, we obtain a well-defined skeleton theory constructed from conformal two- and three-point correlation functions. We consider skeleton equations on the transversal component of the vertex operator and of the spinor propagator in conformal quantum electrodynamics. For simplicity, we restrict the consideration to an Abelian gauge field $A_\mu$, but generalization to a non-Abelian theory is straightforward.
Received: 20.04.2001
English version:
Theoretical and Mathematical Physics, 2001, Volume 128, Issue 3, Pages 1181–1192
DOI: https://doi.org/10.1023/A:1012355602048
Bibliographic databases:
Language: Russian
Citation: V. N. Zaikin, M. Ya. Pal'chik, “Conformally Invariant Regularization and Skeleton Expansions in Gauge Theory”, TMF, 128:3 (2001), 409–421; Theoret. and Math. Phys., 128:3 (2001), 1181–1192
Citation in format AMSBIB
\Bibitem{ZaiPal01}
\by V.~N.~Zaikin, M.~Ya.~Pal'chik
\paper Conformally Invariant Regularization and Skeleton Expansions in Gauge Theory
\jour TMF
\yr 2001
\vol 128
\issue 3
\pages 409--421
\mathnet{http://mi.mathnet.ru/tmf505}
\crossref{https://doi.org/10.4213/tmf505}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1902851}
\zmath{https://zbmath.org/?q=an:1040.81065}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 128
\issue 3
\pages 1181--1192
\crossref{https://doi.org/10.1023/A:1012355602048}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172327200006}
Linking options:
  • https://www.mathnet.ru/eng/tmf505
  • https://doi.org/10.4213/tmf505
  • https://www.mathnet.ru/eng/tmf/v128/i3/p409
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:380
    Full-text PDF :186
    References:40
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024