Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1986, Volume 67, Number 2, Pages 223–236 (Mi tmf5003)  

This article is cited in 2 scientific papers (total in 2 papers)

Quasienergy integral for canonical maps

V. V. Sokolov
References:
Abstract: Canonical (area-preserving) maps of the phase plane of action-angle variables whose coefficients do not depend explicitly on the number of mapping steps are considered. Just as the absence of an explicit time dependence of the coefficients of a canonical system of differential equations leads to energy conservation, such maps may have an integral of the motion – called a quasienergy integral. It is shown that such an integral can be constructed in the form of a series of analytic functions, a perturbation-theory series, and the superconvergent series of Kolmogorov–Arnol'd–Moser (KAM) theory. These series converge only in limited regions of the phase plane, and their sums have simple poles at fixed (resonance) points of the map. For a sufficiently small perturbation constant $g$, it is possible to find approximate regular expressions for the quasienergy near any given resonance with any finite accuracy in $g$. The regions of applicability of the obtained expressions overlap, and this makes it possible to construct at small $g$ an approximate phase portrait of the map on the complete phase plane.
Received: 21.03.1985
English version:
Theoretical and Mathematical Physics, 1986, Volume 67, Issue 2, Pages 464–473
DOI: https://doi.org/10.1007/BF01118153
Bibliographic databases:
Language: Russian
Citation: V. V. Sokolov, “Quasienergy integral for canonical maps”, TMF, 67:2 (1986), 223–236; Theoret. and Math. Phys., 67:2 (1986), 464–473
Citation in format AMSBIB
\Bibitem{Sok86}
\by V.~V.~Sokolov
\paper Quasienergy integral for canonical maps
\jour TMF
\yr 1986
\vol 67
\issue 2
\pages 223--236
\mathnet{http://mi.mathnet.ru/tmf5003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=851560}
\transl
\jour Theoret. and Math. Phys.
\yr 1986
\vol 67
\issue 2
\pages 464--473
\crossref{https://doi.org/10.1007/BF01118153}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986F368200005}
Linking options:
  • https://www.mathnet.ru/eng/tmf5003
  • https://www.mathnet.ru/eng/tmf/v67/i2/p223
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024