Loading [MathJax]/jax/output/CommonHTML/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 64, Number 2, Pages 233–244 (Mi tmf4985)  

This article is cited in 17 scientific papers (total in 17 papers)

Resonance tunneling through a nonstationary potential

D. G. Sokolovskii, M. Yu. Sumetsky
References:
Abstract: In the first order of semiclassical perturbation theory, with allowance for many-quantum transitions, a study is made of resonance tunneling through a two-hump nonstationary potential. The problem is reduced to the solution of a functional equation for the transmission probability amplitude. This equation is solved in general form for the case of nonresonance tunneling. A condition of suppression of resonance by nonstationary effects is obtained. The transmission amplitude is found in the case when the twohump potential oscillates as a whole. Periodic, quasiperiodie, and random nonstationary perturbations are considered.
Received: 12.12.1983
Revised: 30.11.1984
English version:
Theoretical and Mathematical Physics, 1985, Volume 64, Issue 2, Pages 802–810
DOI: https://doi.org/10.1007/BF01017960
Bibliographic databases:
Language: Russian
Citation: D. G. Sokolovskii, M. Yu. Sumetsky, “Resonance tunneling through a nonstationary potential”, TMF, 64:2 (1985), 233–244; Theoret. and Math. Phys., 64:2 (1985), 802–810
Citation in format AMSBIB
\Bibitem{SokSum85}
\by D.~G.~Sokolovskii, M.~Yu.~Sumetsky
\paper Resonance tunneling through a~nonstationary potential
\jour TMF
\yr 1985
\vol 64
\issue 2
\pages 233--244
\mathnet{http://mi.mathnet.ru/tmf4985}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 64
\issue 2
\pages 802--810
\crossref{https://doi.org/10.1007/BF01017960}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985A491800006}
Linking options:
  • https://www.mathnet.ru/eng/tmf4985
  • https://www.mathnet.ru/eng/tmf/v64/i2/p233
  • This publication is cited in the following 17 articles:
    1. Valentina Ros, Markus Müller, “Fluctuation-driven transitions in localized insulators: Intermittent metallicity and path chaos precede delocalization”, Phys. Rev. B, 104:9 (2021)  crossref
    2. S. Longhi, S. A. R. Horsley, G. Della Valle, “Scattering of accelerated wave packets”, Phys. Rev. A, 97:3 (2018)  crossref
    3. V. F. Elesin, “Transient processes in two-barrier nanostructures”, J. Exp. Theor. Phys., 118:6 (2014), 951  crossref
    4. Chuenkov V.A., “On the Feasibility of High-Frequency Radiation Generation in Two-Barrier Rtd Structures with Asymmetric Barriers of Finite Height and Width”, Bull. Lebedev Phys. Inst., 40:7 (2013), 191–197  crossref  isi
    5. Chuenkov V.A., “Dynamic Characteristics of Double-Barrier Nanostructures with Asymmetric Barriers of Finite Height and Widths in a Strong Ac Electric Field”, Semiconductors, 47:12 (2013), 1641–1651  crossref  isi
    6. V. F. Elesin, “Resonant tunneling of interacting electrons in an AC electric field”, J. Exp. Theor. Phys., 117:5 (2013), 950  crossref
    7. G. Murillo, P. A. Schulz, J. C. Arce, “Reversible electron pumping and negative differential resistance in two-step barrier diode under strong terahertz ac field”, Applied Physics Letters, 98:10 (2011)  crossref
    8. V. Kontorin, “On approximate quasi-classical representations of transition probabilities in nonstationary problems of quantum mechanics”, Comput. Math. Math. Phys., 45:6 (2005), 1086–1094  mathnet  mathscinet  zmath
    9. V. F. Elesin, “Resonant tunneling and a nonlinear response in RF fields”, J. Exp. Theor. Phys., 97:2 (2003), 343  crossref
    10. C. Pérez del Valle, R. Lefebvre, O. Atabek, “Transfer-matrix formulation of field-assisted tunneling”, Phys. Rev. A, 59:5 (1999), 3701  crossref
    11. M. Sumetskiǐ, “Forming of wave packets by one-dimensional tunneling structures having a time-dependent potential”, Phys. Rev. B, 46:8 (1992), 4702  crossref
    12. Peter Johansson, Göran Wendin, “Tunneling through a double-barrier structure irradiated by infrared radiation”, Phys. Rev. B, 46:3 (1992), 1451  crossref
    13. M. Sumetskii, “Photon-assisted resonant tunneling through a double quantum well structure: nanometer infrared tunable detector”, Physics Letters A, 153:2-3 (1991), 149  crossref
    14. D. Sokolovski, “Resonance tunneling in a periodic time-dependent external field”, Phys. Rev. B, 37:8 (1988), 4201  crossref
    15. D. G. Sokolovskii, “Quantum time of flight and the adiabatic limit in scattering processes”, Soviet Physics Journal, 31:3 (1988), 217  crossref
    16. D Sokolovski, “The transparency of a double barrier in a time-dependent external field”, J. Phys. C: Solid State Phys., 21:3 (1988), 639  crossref
    17. D. Sokolovski, L. M. Baskin, “Traversal time in quantum scattering”, Phys. Rev. A, 36:10 (1987), 4604  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:475
    Full-text PDF :229
    References:54
    First page:3
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025