Abstract:
For the exactly integrable isotropic Heisenberg model of the chain of NN spins s,
numerical solutions of the Bethe-ansatz equations are obtained which correspond to the
antiferromagnetic vacuum (for sN≤128) and the simplest excitations. At s=1, the
complete set of states is presented for N=6 and the vacuum solution is estimated analytically
for finite N. Deviations from the “string” picture for large N are discussed.
Citation:
L. V. Avdeev, B. Derfel', “Solutions of the Bethe ansatz equations for XXX antiferromagnet of arbitrary spin in the case of a finite number of sites”, TMF, 71:2 (1987), 272–289; Theoret. and Math. Phys., 71:2 (1987), 528–542
\Bibitem{AvdDer87}
\by L.~V.~Avdeev, B.~Derfel'
\paper Solutions of the Bethe ansatz equations for XXX antiferromagnet of arbitrary spin in the case of a~finite number of sites
\jour TMF
\yr 1987
\vol 71
\issue 2
\pages 272--289
\mathnet{http://mi.mathnet.ru/tmf4938}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=911672}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 71
\issue 2
\pages 528--542
\crossref{https://doi.org/10.1007/BF01028653}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987L510600010}
Linking options:
https://www.mathnet.ru/eng/tmf4938
https://www.mathnet.ru/eng/tmf/v71/i2/p272
This publication is cited in the following 14 articles:
Rogier Vlijm, Jean-Sébastien Caux, “Computation of dynamical correlation functions of the spin-1 Babujan–Takhtajan chain”, J. Stat. Mech., 2014:5 (2014), P05009
S Belliard, N Crampé, É Ragoucy, “The scattering matrix for a generalgl(2) spin chain”, J. Stat. Mech., 2009:12 (2009), P12003
Árpád Hegedüs, “Finite size effects and 2-string deviations in the spin-1 XXZ chains”, J. Phys. A: Math. Theor., 40:40 (2007), 12007
R.M. Ellem, V.V. Bazhanov, “Thermodynamic Bethe ansatz for the subleading magnetic perturbation of the tricritical Ising model”, Nuclear Physics B, 512:3 (1998), 563
Kiyohide Nomura, “Logarithmic corrections of the one-dimensionalS=1/2 Heisenberg antiferromagnet”, Phys. Rev. B, 48:22 (1993), 16814
Kiyomi Okamoto, “S=1/2 Heisenberg Chain with Bond Alternation in theSz-SzCoupling”, J. Phys. Soc. Jpn., 61:10 (1992), 3488
H. J. de Vega, Lecture Notes in Physics, 375, Differential Geometric Methods in Theoretical Physics, 1991, 107
H. J. de Vega, Lecture Notes in Physics, 382, Group Theoretical Methods in Physics, 1991, 164
H. J. De Vega, NATO ASI Series, 238, Physics, Geometry and Topology, 1990, 387
Holger Frahm, Nai-Chang Yu, Michael Fowler, “The integrable XXZ Heisenberg model with arbitrary spin: Construction of the Hamiltonian, the ground-state configuration and conformal properties”, Nuclear Physics B, 336:3 (1990), 396
H. J. De Vega, Lecture Notes in Physics, 370, Quantum Groups, 1990, 129
A Klumper, M T Batchelor, “An analytic treatment of finite-size corrections in the spin-1 antiferromagnetic XXZ chain”, J. Phys. A: Math. Gen., 23:5 (1990), L189
H Frahm, Nai-C Yu, “Finite-size effects in the integrable XXZ Heisenberg model with arbitrary spin”, J. Phys. A: Math. Gen., 23:11 (1990), 2115
H.J. De Vega, “Yang-Baxter algebras, integrable theories and quantum groups”, Nuclear Physics B - Proceedings Supplements, 18:1 (1990), 229