Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1987, Volume 71, Number 2, Pages 163–178 (Mi tmf4929)  

This article is cited in 56 scientific papers (total in 56 papers)

Representations of the algebra of “parafermion currents” of spin 4/3 in two-dimensional conformal field theory. Minimal models and the tricritical potts Z3 model

A. B. Zamolodchikov, V. A. Fateev

L. D. Landau Institute for Theoretical Physics, Academy of Sciencies of the USSR
References:
Abstract: A series is constructed of conformal-invariant solutions of two-dimensional quantum field theory which possess global symmetry under the group S3 of permutations of three elements.
Received: 29.11.1985
English version:
Theoretical and Mathematical Physics, 1987, Volume 71, Issue 2, Pages 451–462
DOI: https://doi.org/10.1007/BF01028644
Bibliographic databases:
Language: Russian
Citation: A. B. Zamolodchikov, V. A. Fateev, “Representations of the algebra of “parafermion currents” of spin 4/3 in two-dimensional conformal field theory. Minimal models and the tricritical potts Z3 model”, TMF, 71:2 (1987), 163–178; Theoret. and Math. Phys., 71:2 (1987), 451–462
Citation in format AMSBIB
\Bibitem{ZamFat87}
\by A.~B.~Zamolodchikov, V.~A.~Fateev
\paper Representations of the algebra of ``parafermion currents'' of spin 4/3 in two-dimensional conformal field theory. Minimal models and the tricritical potts $Z_3$ model
\jour TMF
\yr 1987
\vol 71
\issue 2
\pages 163--178
\mathnet{http://mi.mathnet.ru/tmf4929}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=911665}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 71
\issue 2
\pages 451--462
\crossref{https://doi.org/10.1007/BF01028644}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987L510600001}
Linking options:
  • https://www.mathnet.ru/eng/tmf4929
  • https://www.mathnet.ru/eng/tmf/v71/i2/p163
  • This publication is cited in the following 56 articles:
    1. Yin Tang, Han Ma, Qicheng Tang, Yin-Chen He, W. Zhu, “Reclaiming the Lost Conformality in a Non-Hermitian Quantum 5-State Potts Model”, Phys. Rev. Lett., 133:7 (2024)  crossref
    2. Hamed Pakatchi, “Zk(r)-algebras, FQH ground states, and invariants of binary forms”, Nuclear Physics B, 985 (2022), 116010  crossref
    3. Shumpei Iino, “Boundary CFT and Tensor Network Approach to Surface Critical Phenomena of the Tricritical 3-State Potts model”, J Stat Phys, 182:3 (2021)  crossref
    4. Masahide Manabe, “n-th parafermion WN characters from U(N) instanton counting on ℂ2/ℤn”, J. High Energ. Phys., 2020:6 (2020)  crossref
    5. Edward O'Brien, Paul Fendley, “Self-dual S3-invariant quantum chains”, SciPost Phys., 9:6 (2020)  crossref
    6. Shumpei Iino, Satoshi Morita, Naoki Kawashima, “Boundary conformal spectrum and surface critical behavior of classical spin systems: A tensor network renormalization study”, Phys. Rev. B, 101:15 (2020)  crossref
    7. Jesper Lykke Jacobsen, Jesús Salas, Christian R Scullard, “Phase diagram of the triangular-lattice Potts antiferromagnet”, J. Phys. A: Math. Theor., 50:34 (2017), 345002  crossref
    8. Eric Vernier, Jesper Lykke Jacobsen, Jesús Salas, “Q-colourings of the triangular lattice: exact exponents and conformal field theory”, J. Phys. A: Math. Theor., 49:17 (2016), 174004  crossref
    9. Itoyama H. Yoshioka R., “Developments of Theory of Effective Prepotential From Extended Seiberg-Witten System and Matrix Models”, Prog. Theor. Exp. Phys., 2015, no. 11, 11B103  crossref  isi
    10. M. N. Alfimov, A. V. Litvinov, “On spectrum of ILW hierarchy in conformal field theory II: coset CFT's”, J. High Energ. Phys., 2015:2 (2015)  crossref
    11. Rasha M. Farghly, Hitoshi Konno, Kazuyuki Oshima, “Elliptic Algebra Uq,p(ˆg) and Quantum Z-algebras”, Algebr Represent Theor, 18:1 (2015), 103  crossref
    12. Shouvik Datta, Justin R. David, Michael Ferlaino, S. Prem Kumar, “Universal correction to higher spin entanglement entropy”, Phys. Rev. D, 90:4 (2014)  crossref
    13. H. Itoyama, T. Oota, R. Yoshioka, “q-Virasoro/W algebra at root of unity and parafermions”, Nuclear Physics B, 889 (2014), 25  crossref
    14. Gils C. Ardonne E. Trebst S. Huse D.A. Ludwig A.W.W. Troyer M. Wang Z., “Anyonic Quantum Spin Chains: Spin-1 Generalizations and Topological Stability”, Phys. Rev. B, 87:23 (2013)  crossref  isi
    15. Belavin A.A., Bershtein M.A., Feigin B.L., Litvinov A.V., Tarnopolsky G.M., “Instanton Moduli Spaces and Bases in Coset Conformal Field Theory”, Commun. Math. Phys., 319:1 (2013), 269–301  crossref  isi
    16. Flohr M., Koehn M., “What the Characters of Irreducible Subrepresentations of Jordan Cells Can Tell Us About Lcft”, J. Phys. A-Math. Theor., 46:49, SI (2013), 494007  crossref  isi
    17. T. S. Jackson, N. Read, S. H. Simon, “Entanglement subspaces, trial wave functions, and special Hamiltonians in the fractional quantum Hall effect”, Phys. Rev. B, 88:7 (2013)  crossref
    18. Vladimir S. Dotsenko, “Two more solutions for the parafermionic chiral algebra with the dimension of the principal parafermionic fields , ,”, Nuclear Physics B, 864:1 (2012), 203  crossref
    19. M. N. Alfimov, G. M. Tarnopolsky, “Parafermionic Liouville field theory and instantons on ALE spaces”, J. High Energ. Phys., 2012:2 (2012)  crossref
    20. Vladimir S. Dotsenko, “Parafermionic chiral algebra Z3 with the dimension of the principal parafermion fields ψ(z), ψ+(z), Δψ=8/3”, Nuclear Physics B, 863:1 (2012), 130  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:802
    Full-text PDF :279
    References:114
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025