Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 64, Number 1, Pages 32–40 (Mi tmf4899)  

This article is cited in 2 scientific papers (total in 2 papers)

On a Kubo–Martin–Schwinger state of the sine-Gordon system

N. V. Peskov
Full-text PDF (748 kB) Citations (2)
References:
Abstract: The sine-Gordon equation on a finite interval is considered as a Hamiltonian system. A Gaussian measure is defined on an extension of the phase space. It is shown that the partition function $Z$ employed in the statistical mechanics of the solitons is an integral with respect to this measure. An algebra of observables is defined and on it a state is constructed which satisfies the Kubo–Martin–Schwinger condition.
Received: 18.04.1984
English version:
Theoretical and Mathematical Physics, 1985, Volume 64, Issue 1, Pages 666–672
DOI: https://doi.org/10.1007/BF01017033
Bibliographic databases:
Language: Russian
Citation: N. V. Peskov, “On a Kubo–Martin–Schwinger state of the sine-Gordon system”, TMF, 64:1 (1985), 32–40; Theoret. and Math. Phys., 64:1 (1985), 666–672
Citation in format AMSBIB
\Bibitem{Pes85}
\by N.~V.~Peskov
\paper On a~Kubo--Martin--Schwinger state of the sine-Gordon system
\jour TMF
\yr 1985
\vol 64
\issue 1
\pages 32--40
\mathnet{http://mi.mathnet.ru/tmf4899}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=815095}
\zmath{https://zbmath.org/?q=an:0591.35072}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 64
\issue 1
\pages 666--672
\crossref{https://doi.org/10.1007/BF01017033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985AYT5900004}
Linking options:
  • https://www.mathnet.ru/eng/tmf4899
  • https://www.mathnet.ru/eng/tmf/v64/i1/p32
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024