Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1987, Volume 71, Number 1, Pages 31–39 (Mi tmf4854)  

Integral representations of the Schwinger functions for wick polynomials in the free field

È. P. Osipov
References:
Abstract: We obtain integral representations of Schwinger functions for Wick polynomials in the free field, in other words, we obtain Euclidean realizations of Wightman quantum fields given by Wick polynomials in the free field. Using these Euclidean realizations, a new non-perturbative mathematically rigorous approach to constructing quantum field theory with the polynomial interaction in a finite volume of $d$-dimensional spacetime $(d\geq 2)$ and without ultraviolet cut-offs is proposed. In particular, for imaginary values of the coupling constant the generating functional of Schwinger functions is constructed. The theory constructed by this method takes explicitly into account the presence of ultraviolet divergences and its expansion in powers of the coupling constant gives the renormalized series.
Received: 05.12.1985
English version:
Theoretical and Mathematical Physics, 1987, Volume 71, Issue 1, Pages 359–365
DOI: https://doi.org/10.1007/BF01029095
Bibliographic databases:
Language: Russian
Citation: È. P. Osipov, “Integral representations of the Schwinger functions for wick polynomials in the free field”, TMF, 71:1 (1987), 31–39; Theoret. and Math. Phys., 71:1 (1987), 359–365
Citation in format AMSBIB
\Bibitem{Osi87}
\by \`E.~P.~Osipov
\paper Integral representations of the Schwinger functions for wick polynomials in the free field
\jour TMF
\yr 1987
\vol 71
\issue 1
\pages 31--39
\mathnet{http://mi.mathnet.ru/tmf4854}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=913920}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 71
\issue 1
\pages 359--365
\crossref{https://doi.org/10.1007/BF01029095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987K689200004}
Linking options:
  • https://www.mathnet.ru/eng/tmf4854
  • https://www.mathnet.ru/eng/tmf/v71/i1/p31
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024