Abstract:
A new family of quantum one-dimensional magnets with $O(n)$ and $Sp(2k)$ symmetry
is found. The eigenvalues of the corresponding transfer matrices on a finite lattice
are calculated. A generalization of the matrix Bethe ansatz to systems with
complicated pseudovacuum is proposed.
This publication is cited in the following 107 articles:
Tianhao Ren, Elio J. König, Alexei M. Tsvelik, “Topological quantum computation on a chiral Kondo chain”, Phys. Rev. B, 109:7 (2024)
Guang-Liang Li, Junpeng Cao, Yi Qiao, Kun Hao, Wen-Li Yang, “Exact solution of the C2(1) quantum spin chain with open boundary condition”, Nuclear Physics B, 1005 (2024), 116611
Vidas Regelskis, “Bethe vectors and recurrence relations for twisted Yangian based models”, SciPost Phys., 17:5 (2024)
Charlotte Kristjansen, Konstantin Zarembo, “'t Hooft loops and integrability”, J. High Energ. Phys., 2023:8 (2023)
Chengshu Li, Victor L. Quito, Dirk Schuricht, Pedro L. S. Lopes, “G2
integrable point characterization via isotropic spin-3 chains”, Phys. Rev. B, 108:16 (2023)
Sreejith Chulliparambil, Hua-Chen Zhang, Hong-Hao Tu, “Symmetry-protected topological phases, conformal criticalities, and duality in exactly solvable SO(
n
) spin chains”, Phys. Rev. B, 108:9 (2023)
Č. Burdík, O. Navrátil, “Trace formula for the $RTT$-algebra of $sp(4)$ type”, Theoret. and Math. Phys., 213:1 (2022), 1395–1405
Rouven Frassek, Alexander Tsymbaliuk, “Rational Lax Matrices from Antidominantly Shifted Extended Yangians: BCD Types”, Commun. Math. Phys., 392:2 (2022), 545
G A P Ribeiro, A Klümper, P A Pearce, “On the partition function of the Sp(4) integrable vertex model”, J. Stat. Mech., 2022:11 (2022), 113102
Chengshu Li, Victor L. Quito, Eduardo Miranda, Rodrigo Pereira, Ian Affleck, Pedro L. S. Lopes, “The case of SU(3) criticality in spin-2 chains”, Phys. Rev. B, 105:8 (2022)
Denis Bernard, Fabian Essler, Ludwig Hruza, Marko Medenjak, “Dynamics of fluctuations in quantum simple exclusion processes”, SciPost Phys., 12:1 (2022)
A. N. Liashyk, S. Z. Pakuliak, “Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable
models”, Theoret. and Math. Phys., 206:1 (2021), 19–39
Sergey Derkachov, Gwenaël Ferrando, Enrico Olivucci, “Mirror channel eigenvectors of the d-dimensional fishnets”, J. High Energ. Phys., 2021:12 (2021)
Gwenaël Ferrando, Rouven Frassek, Vladimir Kazakov, “QQ-system and Weyl-type transfer matrices in integrable SO(2r) spin chains”, J. High Energ. Phys., 2021:2 (2021)
Katsushi Ito, Takayasu Kondo, Kohei Kuroda, Hongfei Shu, “ODE/IM correspondence for affine Lie algebras: a numerical approach”, J. Phys. A: Math. Theor., 54:4 (2021), 044001
Burdik C. Navratil O., “Nested Bethe Ansatz For Rtt-Algebra Ofu(Q)(Sp(4)) Type”, Phys. Part. Nuclei Lett., 17:5 (2020), 789–793
Karakhanyan D., “Spinor Representations of Orthogonal and Symplectic Yangians”, Phys. Part. Nuclei Lett., 17:5 (2020), 794–802
Karakhanyan D. Kirschner R., “Spinorial R Operator and Algebraic Bethe Ansatz”, Nucl. Phys. B, 951 (2020), 114905
Frassek R., “Oscillator Realisations Associated to the D-Type Yangian: Towards the Operatorial Q-System of Orthogonal Spin Chains”, Nucl. Phys. B, 956 (2020), 115063