Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 63, Number 3, Pages 347–366 (Mi tmf4839)  

This article is cited in 107 scientific papers (total in 107 papers)

Integrable models of quantum one-dimensional magnets with $O(n)$ and $Sp(2k)$ symmetry

N. Yu. Reshetikhin
References:
Abstract: A new family of quantum one-dimensional magnets with $O(n)$ and $Sp(2k)$ symmetry is found. The eigenvalues of the corresponding transfer matrices on a finite lattice are calculated. A generalization of the matrix Bethe ansatz to systems with complicated pseudovacuum is proposed.
Received: 22.05.1984
English version:
Theoretical and Mathematical Physics, 1985, Volume 63, Issue 3, Pages 555–569
DOI: https://doi.org/10.1007/BF01017501
Bibliographic databases:
Language: Russian
Citation: N. Yu. Reshetikhin, “Integrable models of quantum one-dimensional magnets with $O(n)$ and $Sp(2k)$ symmetry”, TMF, 63:3 (1985), 347–366; Theoret. and Math. Phys., 63:3 (1985), 555–569
Citation in format AMSBIB
\Bibitem{Res85}
\by N.~Yu.~Reshetikhin
\paper Integrable models of quantum one-dimensional magnets with $O(n)$ and $Sp(2k)$ symmetry
\jour TMF
\yr 1985
\vol 63
\issue 3
\pages 347--366
\mathnet{http://mi.mathnet.ru/tmf4839}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=805517}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 63
\issue 3
\pages 555--569
\crossref{https://doi.org/10.1007/BF01017501}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985AWZ6400004}
Linking options:
  • https://www.mathnet.ru/eng/tmf4839
  • https://www.mathnet.ru/eng/tmf/v63/i3/p347
  • This publication is cited in the following 107 articles:
    1. Tianhao Ren, Elio J. König, Alexei M. Tsvelik, “Topological quantum computation on a chiral Kondo chain”, Phys. Rev. B, 109:7 (2024)  crossref
    2. Guang-Liang Li, Junpeng Cao, Yi Qiao, Kun Hao, Wen-Li Yang, “Exact solution of the C2(1) quantum spin chain with open boundary condition”, Nuclear Physics B, 1005 (2024), 116611  crossref
    3. Vidas Regelskis, “Bethe vectors and recurrence relations for twisted Yangian based models”, SciPost Phys., 17:5 (2024)  crossref
    4. Charlotte Kristjansen, Konstantin Zarembo, “'t Hooft loops and integrability”, J. High Energ. Phys., 2023:8 (2023)  crossref
    5. Chengshu Li, Victor L. Quito, Dirk Schuricht, Pedro L. S. Lopes, “G2 integrable point characterization via isotropic spin-3 chains”, Phys. Rev. B, 108:16 (2023)  crossref
    6. Sreejith Chulliparambil, Hua-Chen Zhang, Hong-Hao Tu, “Symmetry-protected topological phases, conformal criticalities, and duality in exactly solvable SO( n ) spin chains”, Phys. Rev. B, 108:9 (2023)  crossref
    7. Regelskis V., “Algebraic Bethe Ansatz For Spinor R-Matrices”, SciPost Phys., 12:2 (2022), 067  crossref  isi
    8. Č. Burdík, O. Navrátil, “Trace formula for the $RTT$-algebra of $sp(4)$ type”, Theoret. and Math. Phys., 213:1 (2022), 1395–1405  mathnet  crossref  crossref  mathscinet  adsnasa
    9. Rouven Frassek, Alexander Tsymbaliuk, “Rational Lax Matrices from Antidominantly Shifted Extended Yangians: BCD Types”, Commun. Math. Phys., 392:2 (2022), 545  crossref
    10. G A P Ribeiro, A Klümper, P A Pearce, “On the partition function of the Sp(4) integrable vertex model”, J. Stat. Mech., 2022:11 (2022), 113102  crossref
    11. Chengshu Li, Victor L. Quito, Eduardo Miranda, Rodrigo Pereira, Ian Affleck, Pedro L. S. Lopes, “The case of SU(3) criticality in spin-2 chains”, Phys. Rev. B, 105:8 (2022)  crossref
    12. Denis Bernard, Fabian Essler, Ludwig Hruza, Marko Medenjak, “Dynamics of fluctuations in quantum simple exclusion processes”, SciPost Phys., 12:1 (2022)  crossref
    13. A. N. Liashyk, S. Z. Pakuliak, “Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable models”, Theoret. and Math. Phys., 206:1 (2021), 19–39  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    14. Sergey Derkachov, Gwenaël Ferrando, Enrico Olivucci, “Mirror channel eigenvectors of the d-dimensional fishnets”, J. High Energ. Phys., 2021:12 (2021)  crossref
    15. Gwenaël Ferrando, Rouven Frassek, Vladimir Kazakov, “QQ-system and Weyl-type transfer matrices in integrable SO(2r) spin chains”, J. High Energ. Phys., 2021:2 (2021)  crossref
    16. Katsushi Ito, Takayasu Kondo, Kohei Kuroda, Hongfei Shu, “ODE/IM correspondence for affine Lie algebras: a numerical approach”, J. Phys. A: Math. Theor., 54:4 (2021), 044001  crossref
    17. Burdik C. Navratil O., “Nested Bethe Ansatz For Rtt-Algebra Ofu(Q)(Sp(4)) Type”, Phys. Part. Nuclei Lett., 17:5 (2020), 789–793  crossref  isi
    18. Karakhanyan D., “Spinor Representations of Orthogonal and Symplectic Yangians”, Phys. Part. Nuclei Lett., 17:5 (2020), 794–802  crossref  isi
    19. Karakhanyan D. Kirschner R., “Spinorial R Operator and Algebraic Bethe Ansatz”, Nucl. Phys. B, 951 (2020), 114905  crossref  isi
    20. Frassek R., “Oscillator Realisations Associated to the D-Type Yangian: Towards the Operatorial Q-System of Orthogonal Spin Chains”, Nucl. Phys. B, 956 (2020), 115063  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:558
    Full-text PDF :250
    References:65
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025