Abstract:
The invariant spin operators $\hat M=H^{\mu\nu}\hat\Pi_{\mu\nu}/2$
and $\hat M^{'}=E^{\mu\nu}\hat S_{\mu}\hat P_{\nu}/m_0c$, where
$\hat\Pi_{\mu\nu}$ and $\hat S_{\mu}$ are spin operators,
$H^{\mu\nu}$ is the tensor of an external electromagnetic field,
and $E^{\mu\nu}$ is the tensor that is the dual of $H^{\mu\nu}$,
are considered. The spin invariants $\hat M$ and $\hat M^{'}$ in
the rest frame of the particle determine the spin projection onto
the direction of the magnetic field. It is shown that in the
Bargmann–Miehel–Telegdi approximation both spin invariants $\hat
M=\hat M^{'}$ are integrals of the motion in both the classical
and the quantum theory.
Citation:
V. A. Bordovitsyn, I. M. Ternov, “Invariant definition of relativistic spin states in classical and quantum theories with an external field”, TMF, 59:2 (1984), 220–223; Theoret. and Math. Phys., 59:2 (1984), 465–467
\Bibitem{BorTer84}
\by V.~A.~Bordovitsyn, I.~M.~Ternov
\paper Invariant definition of relativistic spin states in classical and quantum theories with an external field
\jour TMF
\yr 1984
\vol 59
\issue 2
\pages 220--223
\mathnet{http://mi.mathnet.ru/tmf4824}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=752083}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 59
\issue 2
\pages 465--467
\crossref{https://doi.org/10.1007/BF01018180}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TT27400005}
Linking options:
https://www.mathnet.ru/eng/tmf4824
https://www.mathnet.ru/eng/tmf/v59/i2/p220
This publication is cited in the following 2 articles:
V.A Bordovitsyn, A.N Myagkii, “On the grounding of spin effects in theory of synchrotron radiation”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 448:1-2 (2000), 81
V. A. Bordovitsyn, A. N. Myagkii, “Spin invariants and uniqueness of spin operators”, Russ Phys J, 42:10 (1999), 868