Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1989, Volume 78, Number 3, Pages 422–433 (Mi tmf4797)  

This article is cited in 13 scientific papers (total in 13 papers)

Nonasymptotic form of the recursion relations of the three-dimensional Ising model

M. P. Kozlovskii
References:
Abstract: Approximate recurrence relations (RR) in the three-dimensional Ising model are obtained in the form of rapidly convergent series. The representation of RR in the form of nonasymptotical series is related to rejecting the traditional perturbation theory based on the Gaussian measure density. Using the RR obtained, value of the critical exponent of the correlation length ν is calculated. It is shown that if higher nongaussian basic measures are used then the difference form of the RR implies independence of the critical exponent ν of s for s>2 (s is the parameter of the layer structure of the phase space). The results obtained make it possible to obtain explicit expressions for thermodynamic functions in the neighbourhood of the phase transition point.
Received: 29.07.1987
English version:
Theoretical and Mathematical Physics, 1989, Volume 78, Issue 3, Pages 300–308
DOI: https://doi.org/10.1007/BF01017668
Bibliographic databases:
Language: Russian
Citation: M. P. Kozlovskii, “Nonasymptotic form of the recursion relations of the three-dimensional Ising model”, TMF, 78:3 (1989), 422–433; Theoret. and Math. Phys., 78:3 (1989), 300–308
Citation in format AMSBIB
\Bibitem{Koz89}
\by M.~P.~Kozlovskii
\paper Nonasymptotic form of~the recursion relations of~the three-dimensional Ising model
\jour TMF
\yr 1989
\vol 78
\issue 3
\pages 422--433
\mathnet{http://mi.mathnet.ru/tmf4797}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=996225}
\transl
\jour Theoret. and Math. Phys.
\yr 1989
\vol 78
\issue 3
\pages 300--308
\crossref{https://doi.org/10.1007/BF01017668}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1989AU78400011}
Linking options:
  • https://www.mathnet.ru/eng/tmf4797
  • https://www.mathnet.ru/eng/tmf/v78/i3/p422
  • This publication is cited in the following 13 articles:
    1. Yukhnovskii I.R., Kozlovskii M.P., Pylyuk I.V., “Critical Behavior of a 3D Ising-Like System in the Higher Non-Gaussian Approximation: Inclusion of the Critical Exponent of the Correlation Function”, Int. J. Mod. Phys. B, 28:24 (2014), 1450160  crossref  isi
    2. Pylyuk I.V., Ulyak M.V., “Critical Behaviour of a 3D Ising-Like System in the Rho(6) Model Approximation: Role of the Correction for the Potential Averaging”, Condens. Matter Phys., 15:4 (2012)  crossref  isi
    3. Pylyuk I.V., Kozlovskii M.P., “Calculation of free energy of a three-dimensional Ising-like system in an external field with the use of the rho(6) model”, Physica a-Statistical Mechanics and its Applications, 389:23 (2010), 5390–5401  crossref  isi
    4. Yukhnovskii, IR, “Study of the critical behaviour of three-dimensional Ising-like systems on the basis of the rho(6) model with allowance for microscopic parameters: II. Low-temperature region”, Journal of Physics-Condensed Matter, 14:45 (2002), 11701  crossref  isi
    5. Yukhnovskii, IR, “Study of the critical behaviour of three-dimensional Ising-like systems on the basis of the rho(6) model with allowance for microscopic parameters: I. High-temperature region”, Journal of Physics-Condensed Matter, 14:43 (2002), 10113  crossref  isi
    6. Yukhnovskii, IR, “Thermodynamics of three-dimensional Ising-like systems in the higher non-Gaussian approximation: Calculational method and dependence on microscopic parameters”, Physical Review B, 66:13 (2002), 134410  crossref  isi
    7. Pylyuk, IV, “Description of critical behavior of Ising ferromagnet in the rho(6) model approximation taking into account confluent correction. I. Region above the phase transition point”, Low Temperature Physics, 25:11 (1999), 877  crossref  isi
    8. I. V. Pylyuk, “Critical behavior of the three-dimensional Ising sistem: Dependence of themodynamic characteristics on microscopic parameters”, Theoret. and Math. Phys., 117:3 (1998), 1459–1482  mathnet  crossref  crossref  zmath  isi
    9. M.P. Kozlovskii, I.V. Pylyuk, V.V. Dukhovii, “Equation of state of the 3D Ising model with an exponentially decreasing potential in the external field”, Journal of Magnetism and Magnetic Materials, 169:3 (1997), 335  crossref
    10. V. V. Dukhovyi, M. P. Kozlovskii, I. V. Pylyuk, “Equation of state in 3-D Ising model from microscopic level calculation”, Theoret. and Math. Phys., 107:2 (1996), 650–666  mathnet  crossref  crossref  zmath  isi
    11. M. P. Kozlovskii, I. V. Pylyuk, Z. E. Usatenko, “Method of calculating the critical temperature of three‐dimensional Ising‐like system using the non‐gaussian distribution”, Physica Status Solidi (b), 197:2 (1996), 465  crossref
    12. M. P. Kozlovskii, I. V. Pylyuk, “Entropy and specific heat of the 3D ising model as functions of temperature and microscopic parameters of the system”, Physica Status Solidi (b), 183:1 (1994), 243  crossref
    13. M. P. Kozlovskii, I. V. Pylyuk, I. R. Yukhnovskii, “Thermodynamic functions of three-dimensional ising model near the phase transition point with allowance for corrections to scaling. I. The case T>Tc”, Theoret. and Math. Phys., 87:2 (1991), 540–556  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :98
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025