Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1989, Volume 78, Number 3, Pages 368–383 (Mi tmf4792)  

This article is cited in 10 scientific papers (total in 10 papers)

Quantum field renormalization group in the theory of stochastic Langmuir turbulence

L. Ts. Adzhemyan, A. N. Vasil'ev, M. Gnatich, Yu. M. Pis'mak

Leningrad State University
References:
Abstract: Quantum field theory renormalization group is used for analysing the Langmuir stochastic turbulence of plasma described by the Zakharov equations [1] with random noises. Existence of the dissipative scaling critical regime is proved, for which all the critical exponents are nontrivial and are calculated in the framework of the 4ε expansion up to ε2. An explicit expression is obtained for the scaling asymptotics of the longitudinal dielectric permeability ε(ω,k) in the neighbourhood of a “critical point” ε(ωe,0)=0 (ωe is the Langmuir frequency). The expression implies, in particular, that the usual dispersion law of the Langmuir waves ωωlk2 is substitutted for small k by the law ωωlk2γa in which the exponent γa is known up to ε2.
Received: 03.08.1987
English version:
Theoretical and Mathematical Physics, 1989, Volume 78, Issue 3, Pages 260–271
DOI: https://doi.org/10.1007/BF01017663
Bibliographic databases:
Language: Russian
Citation: L. Ts. Adzhemyan, A. N. Vasil'ev, M. Gnatich, Yu. M. Pis'mak, “Quantum field renormalization group in the theory of stochastic Langmuir turbulence”, TMF, 78:3 (1989), 368–383; Theoret. and Math. Phys., 78:3 (1989), 260–271
Citation in format AMSBIB
\Bibitem{AdzVasGna89}
\by L.~Ts.~Adzhemyan, A.~N.~Vasil'ev, M.~Gnatich, Yu.~M.~Pis'mak
\paper Quantum field renormalization group in~the theory of~stochastic Langmuir turbulence
\jour TMF
\yr 1989
\vol 78
\issue 3
\pages 368--383
\mathnet{http://mi.mathnet.ru/tmf4792}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=996222}
\transl
\jour Theoret. and Math. Phys.
\yr 1989
\vol 78
\issue 3
\pages 260--271
\crossref{https://doi.org/10.1007/BF01017663}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1989AU78400006}
Linking options:
  • https://www.mathnet.ru/eng/tmf4792
  • https://www.mathnet.ru/eng/tmf/v78/i3/p368
  • This publication is cited in the following 10 articles:
    1. N V Antonov, N M Gulitskiy, P I Kakin, A S Romanchuk, “Random walk on a random surface: implications of non-perturbative concepts and dynamical emergence of Galilean symmetry”, J. Phys. A: Math. Theor., 58:11 (2025), 115001  crossref
    2. Volodymyr M. Lashkin, Oleg K. Cheremnykh, “Three-dimensional solitons in fractional nonlinear Schrödinger equation with exponential saturating nonlinearity”, Chaos, Solitons & Fractals, 186 (2024), 115254  crossref
    3. Kakin P.I., Reiter M.A., Tumakova M.M., Gulitskiy N.M., Antonov N.V., “Stirred Kardar-Parisi-Zhang Equation With Quenched Random Noise: Emergence of Induced Nonlinearity”, Universe, 8:2 (2022), 72  crossref  isi
    4. N. V. Antonov, M. M. Kostenko, “Renormalization Group in the Problem of Active Scalar Advection”, J Math Sci, 257:4 (2021), 425  crossref
    5. Yu. A. Zhavoronkov, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, J. Honkonen, “Critical dynamics of the phase transition to the superfluid state”, Theoret. and Math. Phys., 200:2 (2019), 1237–1251  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    6. J. Honkonen, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, “Kinetic theory of boson gas”, Theoret. and Math. Phys., 200:3 (2019), 1360–1373  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. N. V. Antonov, M. M. Kostenko, “Renormalization group in the problem of active scalar advection”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 26, Zap. nauchn. sem. POMI, 487, POMI, SPb., 2019, 5–27  mathnet
    8. Weigang Liu, Uwe C Täuber, “Critical initial-slip scaling for the noisy complex Ginzburg–Landau equation”, J. Phys. A: Math. Theor., 49:43 (2016), 434001  crossref
    9. N. V. Antonov, S. V. Borisenok, V. I. Girina, “Renormalization group in the theory of fully developed turbulence. Problem of the infrared relevant corrections to the Navier–Stokes equation”, Theoret. and Math. Phys., 107:1 (1996), 456–468  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. Adzhemyan L.T., Antonov N.V., Vasilev A.N., “Quantum field renormalisation group in the theory of developed turbulence”, Uspekhi Fizicheskikh Nauk, 166:12 (1996), 1257–1284  mathnet  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:512
    Full-text PDF :187
    References:64
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025