Abstract:
Quantum field theory renormalization group is used for analysing the Langmuir stochastic turbulence of plasma described by the Zakharov equations [1] with random noises. Existence of the dissipative scaling critical regime is proved, for which all the critical exponents are nontrivial and are calculated in the framework of the 4−ε expansion up to ε2. An explicit expression is obtained for the scaling asymptotics of the longitudinal dielectric permeability ε∥(ω,k) in the neighbourhood of a “critical point” ε∥(ωe,0)=0 (ωe is the Langmuir frequency). The expression implies, in particular, that the usual dispersion law of the Langmuir waves ω−ωl∼k2 is substitutted for small k by the law ω−ωl∼k2−γa in which the exponent γa is known up to ε2.
Citation:
L. Ts. Adzhemyan, A. N. Vasil'ev, M. Gnatich, Yu. M. Pis'mak, “Quantum field renormalization group in the theory of stochastic Langmuir turbulence”, TMF, 78:3 (1989), 368–383; Theoret. and Math. Phys., 78:3 (1989), 260–271
This publication is cited in the following 10 articles:
N V Antonov, N M Gulitskiy, P I Kakin, A S Romanchuk, “Random walk on a random surface: implications of non-perturbative concepts and dynamical emergence of Galilean symmetry”, J. Phys. A: Math. Theor., 58:11 (2025), 115001
Volodymyr M. Lashkin, Oleg K. Cheremnykh, “Three-dimensional solitons in fractional nonlinear Schrödinger equation with exponential saturating nonlinearity”, Chaos, Solitons & Fractals, 186 (2024), 115254
Kakin P.I., Reiter M.A., Tumakova M.M., Gulitskiy N.M., Antonov N.V., “Stirred Kardar-Parisi-Zhang Equation With Quenched Random Noise: Emergence of Induced Nonlinearity”, Universe, 8:2 (2022), 72
N. V. Antonov, M. M. Kostenko, “Renormalization Group in the Problem of Active Scalar Advection”, J Math Sci, 257:4 (2021), 425
Yu. A. Zhavoronkov, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, J. Honkonen, “Critical dynamics of the phase transition to the superfluid state”, Theoret. and Math. Phys., 200:2 (2019), 1237–1251
J. Honkonen, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, “Kinetic theory of boson gas”, Theoret. and Math. Phys., 200:3 (2019), 1360–1373
N. V. Antonov, M. M. Kostenko, “Renormalization group in the problem of active scalar advection”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 26, Zap. nauchn. sem. POMI, 487, POMI, SPb., 2019, 5–27
Weigang Liu, Uwe C Täuber, “Critical initial-slip scaling for the noisy complex Ginzburg–Landau equation”, J. Phys. A: Math. Theor., 49:43 (2016), 434001
N. V. Antonov, S. V. Borisenok, V. I. Girina, “Renormalization group in the theory of fully developed turbulence. Problem of the infrared relevant corrections to the Navier–Stokes equation”, Theoret. and Math. Phys., 107:1 (1996), 456–468
Adzhemyan L.T., Antonov N.V., Vasilev A.N., “Quantum field renormalisation group in the theory of developed turbulence”, Uspekhi Fizicheskikh Nauk, 166:12 (1996), 1257–1284