Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1989, Volume 78, Number 3, Pages 345–356 (Mi tmf4790)  

This article is cited in 32 scientific papers (total in 33 papers)

Asymptotics at tt of the solution to the Cauchy problem for the Korteweg–de Vries equation in the class of potentials with finite-gap behavior as x±x±

R. F. Bikbaev, R. A. Sharipov
References:
Abstract: The Cauchy problem for the KdV equation is considered in the class of functions approaching at x±x± two different finite-gap solutions of this equation which correspond to the same Riemann surface. With the help of the inverse scattering method the large time asymptotics of the Cauchy problem solution is considered.
Received: 29.08.1987
English version:
Theoretical and Mathematical Physics, 1989, Volume 78, Issue 3, Pages 244–252
DOI: https://doi.org/10.1007/BF01017661
Bibliographic databases:
Language: Russian
Citation: R. F. Bikbaev, R. A. Sharipov, “Asymptotics at tt of the solution to the Cauchy problem for the Korteweg–de Vries equation in the class of potentials with finite-gap behavior as x±x±”, TMF, 78:3 (1989), 345–356; Theoret. and Math. Phys., 78:3 (1989), 244–252
Citation in format AMSBIB
\Bibitem{BikSha89}
\by R.~F.~Bikbaev, R.~A.~Sharipov
\paper Asymptotics at~$t\to\infty$ of~the solution to~the Cauchy problem for the Korteweg--de~Vries equation in~the class of~potentials with finite-gap behavior as~$x\to\pm\infty$
\jour TMF
\yr 1989
\vol 78
\issue 3
\pages 345--356
\mathnet{http://mi.mathnet.ru/tmf4790}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=996221}
\zmath{https://zbmath.org/?q=an:0694.35145}
\transl
\jour Theoret. and Math. Phys.
\yr 1989
\vol 78
\issue 3
\pages 244--252
\crossref{https://doi.org/10.1007/BF01017661}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1989AU78400004}
Linking options:
  • https://www.mathnet.ru/eng/tmf4790
  • https://www.mathnet.ru/eng/tmf/v78/i3/p345
  • This publication is cited in the following 33 articles:
    1. A. B. Khasanov, T. G. Khasanov, “The Cauchy Problem for the Nonlinear Complex Modified Korteweg-de Vries Equation with Additional Terms in the Class of Periodic Infinite-Gap Functions”, Sib Math J, 65:4 (2024), 846  crossref
    2. A. B. Khasanov, T. G. Khasanov, “Zadacha Koshi dlya nelineinogo kompleksnogo modifitsirovannogo uravneniya Kortevega — de Friza (kmKdF) s dopolnitelnymi chlenami v klasse periodicheskikh beskonechnozonnykh funktsii”, Sib. matem. zhurn., 65:4 (2024), 735–759  mathnet  crossref
    3. Thierry Laurens, “Global Well-Posedness for H1(R) Perturbations of KdV with Exotic Spatial Asymptotics”, Commun. Math. Phys., 397:3 (2023), 1387  crossref
    4. Laurens T., “Kdv on An Incoming Tide”, Nonlinearity, 35:1 (2022), 343–387  crossref  isi
    5. U. B. Muminov, A. B. Khasanov, “Zadacha Koshi dlya defokusiruyuschego nelineinogo uravneniya Shredingera s nagruzhennym chlenom”, Matem. tr., 25:1 (2022), 102–133  mathnet  crossref
    6. U. B. Muminov, A. B. Khasanov, “The Cauchy Problem for the Defocusing Nonlinear Schrödinger Equation with a Loaded Term”, Sib. Adv. Math., 32:4 (2022), 277  crossref
    7. V. Yu. Novokshenov, “Parametric Resonance in Integrable Systems and Averaging on Riemann Surfaces”, J Math Sci, 258:1 (2021), 65  crossref
    8. V. Yu. Novokshenov, “Parametricheskii rezonans v integriruemykh sistemakh i usrednenie na rimanovykh poverkhnostyakh”, Differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 163, VINITI RAN, M., 2019, 65–80  mathnet  mathscinet
    9. Bertola M., Minakov A., “Laguerre Polynomials and Transitional Asymptotics of the Modified Korteweg-de Vries Equation For Step-Like Initial Data”, Anal. Math. Phys., 9:4 (2019), 1761–1818  crossref  isi
    10. Rustem R. Aydagulov, Alexander A. Minakov, “Initial-Boundary Value Problem for Stimulated Raman Scattering Model: Solvability of Whitham Type System of Equations Arising in Long-Time Asymptotic Analysis”, SIGMA, 14 (2018), 119, 19 pp.  mathnet  crossref
    11. Barbara Prinari, Francesco Demontis, Sitai Li, Theodoros P. Horikis, “Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions”, Physica D: Nonlinear Phenomena, 368 (2018), 22  crossref
    12. I. Egorova, Z. Gladka, G. Teschl, “On the form of dispersive shock waves of the Korteweg–de Vries equation”, Zhurn. matem. fiz., anal., geom., 12:1 (2016), 3–16  mathnet  crossref  mathscinet
    13. Tamara Grava, Lecture Notes in Physics, 926, Rogue and Shock Waves in Nonlinear Dispersive Media, 2016, 309  crossref
    14. I. Egorova, Z. Gladka, T. L. Lange, G. Teschl, “Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials”, Zhurn. matem. fiz., anal., geom., 11:2 (2015), 123–158  mathnet  crossref  mathscinet
    15. Kotlyarov V., Minakov A., “Modulated Elliptic Wave and Asymptotic Solitons in a Shock Problem To the Modified Korteweg-de Vries Equation”, J. Phys. A-Math. Theor., 48:30 (2015), 305201  crossref  isi
    16. Iryna Egorova, Zoya Gladka, Volodymyr Kotlyarov, Gerald Teschl, “Long-time asymptotics for the Korteweg–de Vries equation with step-like initial data”, Nonlinearity, 26:7 (2013), 1839  crossref
    17. Egorova I., Teschl G., “On the Cauchy Problem for the Kortewegde Vries Equation With Steplike Finite-Gap Initial Data II. Perturbations With Finite Moments”, J Anal Math, 115 (2011), 71–101  crossref  isi
    18. Egorova, I, “On the Cauchy problem for the Korteweg-de Vries equation with steplike finite-gap initial data: I. Schwartz-type perturbations”, Nonlinearity, 22:6 (2009), 1431  crossref  isi
    19. V. Yu. Novokshenov, “Temporal asymptotics for soliton equations in problems with step initial conditions”, J Math Sci, 125:5 (2005), 717  crossref
    20. V. Yu. Novokshenov, “Temporal asymptotics for soliton equations in problems with step initial conditions”, J Math Sci, 125:5 (2005), 717  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:580
    Full-text PDF :163
    References:84
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025