|
Teoreticheskaya i Matematicheskaya Fizika, 1989, Volume 78, Number 3, Pages 330–334
(Mi tmf4788)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Analog of the Carleman formula in the future tube
T. N. Nikitina
Abstract:
An analogue of the Carleman formula reconstructing values of the function F(z)
such that $\frac{F(z)}{[(z++{\mathbf i})^2]^{4/p}}\in H^p(\tau^+)$, holomorphic in the tube domain over the future light cone $\tau^+\subset\mathbb C^4$, by given values of $F(z)$ on a set $L$ of positive measure which lies on the distinguished boundary of the domain $\tau^+$, i. e. $L\subset\mathbb R^4$, $m_4(L)>0$, is obtained.
Received: 09.04.1987 Revised: 13.06.1988
Citation:
T. N. Nikitina, “Analog of the Carleman formula in the future tube”, TMF, 78:3 (1989), 330–334; Theoret. and Math. Phys., 78:3 (1989), 234–237
Linking options:
https://www.mathnet.ru/eng/tmf4788 https://www.mathnet.ru/eng/tmf/v78/i3/p330
|
|