Abstract:
The structure of the vacuum state and the spectrum of
single-particle excitations are investigated in the quantum
lattice sine-Gordon model, which is a regularized version of the
corresponding quantum-field model. The region of coupling
constants 0<γ<π/2 is considered.
Citation:
N. M. Bogolyubov, A. G. Izergin, “Lattice completely integrable regularization of the sine-Gordon model for small coupling constants”, TMF, 59:2 (1984), 183–199; Theoret. and Math. Phys., 59:2 (1984), 441–452
\Bibitem{BogIze84}
\by N.~M.~Bogolyubov, A.~G.~Izergin
\paper Lattice completely integrable regularization of the sine-Gordon model for small coupling constants
\jour TMF
\yr 1984
\vol 59
\issue 2
\pages 183--199
\mathnet{http://mi.mathnet.ru/tmf4786}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=752080}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 59
\issue 2
\pages 441--452
\crossref{https://doi.org/10.1007/BF01018177}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TT27400002}
Linking options:
https://www.mathnet.ru/eng/tmf4786
https://www.mathnet.ru/eng/tmf/v59/i2/p183
This publication is cited in the following 4 articles:
A A Zvyagin, “Bethe ansatz solvable multi-chain quantum systems”, J. Phys. A: Math. Gen., 34:41 (2001), R21
A. A. Zvyagin, “Commensurate–incommensurate phase transitions for multichain quantum spin models: exact results”, Low Temperature Physics, 26:2 (2000), 134
N. M. Bogolyubov, “Thermodynamics of a one-dimensional lattice Bose gas”, Theoret. and Math. Phys., 67:3 (1986), 614–622
N. M. Bogolyubov, A. G. Izergin, “Lattice sine-Gordon model with local Hamiltonian”, Theoret. and Math. Phys., 61:3 (1984), 1195–1204