Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1988, Volume 75, Number 2, Pages 201–211 (Mi tmf4773)  

This article is cited in 24 scientific papers (total in 24 papers)

Quantization of non-Abelian antisymmetric tensor field

A. A. Slavnov, S. A. Frolov
References:
Abstract: The procedure of canonical quantization is used to obtain a manifestly Lorentz-invariant expression for the $S$ matrix of an antisymmetric tensor field. It is shown that at the quantum level this theory is equivalent to the nonlinear sigma model.
Received: 14.01.1987
English version:
Theoretical and Mathematical Physics, 1988, Volume 75, Issue 2, Pages 470–477
DOI: https://doi.org/10.1007/BF01017485
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Slavnov, S. A. Frolov, “Quantization of non-Abelian antisymmetric tensor field”, TMF, 75:2 (1988), 201–211; Theoret. and Math. Phys., 75:2 (1988), 470–477
Citation in format AMSBIB
\Bibitem{SlaFro88}
\by A.~A.~Slavnov, S.~A.~Frolov
\paper Quantization of non-Abelian antisymmetric tensor field
\jour TMF
\yr 1988
\vol 75
\issue 2
\pages 201--211
\mathnet{http://mi.mathnet.ru/tmf4773}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=959125}
\transl
\jour Theoret. and Math. Phys.
\yr 1988
\vol 75
\issue 2
\pages 470--477
\crossref{https://doi.org/10.1007/BF01017485}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1988U172900004}
Linking options:
  • https://www.mathnet.ru/eng/tmf4773
  • https://www.mathnet.ru/eng/tmf/v75/i2/p201
  • This publication is cited in the following 24 articles:
    1. Sergei M. Kuzenko, Emmanouil S. N. Raptakis, “Covariant quantisation of tensor multiplet models”, J. High Energ. Phys., 2024:9 (2024)  crossref
    2. P. M. Lavrov, Ilya Shapiro, Handbook of Quantum Gravity, 2024, 389  crossref
    3. P. M. Lavrov, I. L. Shapiro, Handbook of Quantum Gravity, 2023, 1  crossref
    4. Buchbinder I.L. Ivanov E.A. Pletnev N.G., “Superfield approach to the construction of effective action in quantum field theory with extended supersymmetry”, Phys. Part. Nuclei, 47:3 (2016), 291–369  crossref  isi  elib  scopus
    5. Pavel Yu. Moshin, Alexander A. Reshetnyak, “Finite BRST–antiBRST transformations in Lagrangian formalism”, Physics Letters B, 739 (2014), 110  crossref
    6. Ignatios Antoniadis, George Savvidy, “New gauge anomalies and topological invariants in various dimensions”, Eur. Phys. J. C, 72:9 (2012)  crossref
    7. Proc. Steklov Inst. Math., 272 (2011), 201–215  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    8. M. V. Chizhov, “Theory and phenomenology of spin-1 chiral particles”, Phys. Part. Nuclei, 42:1 (2011), 93  crossref
    9. Peter M. Lavrov, “Sp(2) renormalization”, Nuclear Physics B, 849:2 (2011), 503  crossref
    10. Lavrov P.M., Shapiro I.L., “Renormalization of gauge theories in curved space-time”, Physical Review D, 81:4 (2010), 044026  crossref  isi
    11. Savvidy G., “Topological mass generation four-dimensional gauge theory”, Phys Lett B, 694:1 (2010), 65–73  crossref  isi
    12. I. L. Buchbinder, N. G. Pletnev, “One-loop effective action in the $\mathcal N=2$ supersymmetric massive Yang–Mills field theory”, Theoret. and Math. Phys., 157:1 (2008), 1383–1398  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    13. Bogusław Broda, Piotr Bronowski, Marcin Ostrowski, Michał Szanecki, “Quantization of four-dimensional Abelian gravity”, Physics Letters B, 655:3-4 (2007), 178  crossref
    14. Geyer, B, “Gauge models in modified triplectic quantization”, International Journal of Modern Physics A, 16:26 (2001), 4297  crossref  isi
    15. P.M. Lavrov, P.Yu. Moshin, “Physical unitarity in the Lagrangian Sp(2)-symmetric formalism”, Nuclear Physics B, 486:3 (1997), 565  crossref
    16. Joaquim Gomis, Jordi París, Stuart Samuel, “Antibracket, antifields and gauge-theory quantization”, Physics Reports, 259:1-2 (1995), 1  crossref
    17. S. A. Frolov, “BRST quantization of gauge theories in Hamiltonian-like gauges”, Theoret. and Math. Phys., 87:2 (1991), 464–477  mathnet  crossref  mathscinet  zmath  isi
    18. M. Baker, James S. Ball, F. Zachariasen, “Unitarity in dual QCD”, Phys. Rev. D, 44:8 (1991), 2578  crossref
    19. A. A. Slavnov, S. A. Frolov, “Lagrangian BRST quantization and unitarity”, Theoret. and Math. Phys., 85:3 (1990), 1237–1255  mathnet  crossref  mathscinet  isi
    20. N.K. Nielsen, “Quantum equivalence of four-dimensional nonlinear σ-model and antisymmetric tensor model”, Nuclear Physics B, 332:2 (1990), 391  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:361
    Full-text PDF :143
    References:64
    First page:3
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025