Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1988, Volume 75, Number 1, Pages 157–160 (Mi tmf4769)  

This article is cited in 28 scientific papers (total in 28 papers)

A generalization of the renormalization-group equations for quantum-field theories of arbitrary form

D. I. Kazakov
References:
Abstract: A generalization of the renormalization-group equations to theories with Lagrangian of arbitrary form, including unrenormalizable interactions, is given, in the framework of dimensional regularization, the obtained equations make it possible to determine the coefficient functions of the higher poles from the lowest pole or the generalized $\beta$ functions.
Received: 18.03.1987
English version:
Theoretical and Mathematical Physics, 1988, Volume 75, Issue 1, Pages 440–442
DOI: https://doi.org/10.1007/BF01017179
Bibliographic databases:
Language: Russian
Citation: D. I. Kazakov, “A generalization of the renormalization-group equations for quantum-field theories of arbitrary form”, TMF, 75:1 (1988), 157–160; Theoret. and Math. Phys., 75:1 (1988), 440–442
Citation in format AMSBIB
\Bibitem{Kaz88}
\by D.~I.~Kazakov
\paper A~generalization of the renormalization-group equations for quantum-field theories of arbitrary form
\jour TMF
\yr 1988
\vol 75
\issue 1
\pages 157--160
\mathnet{http://mi.mathnet.ru/tmf4769}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=955670}
\transl
\jour Theoret. and Math. Phys.
\yr 1988
\vol 75
\issue 1
\pages 440--442
\crossref{https://doi.org/10.1007/BF01017179}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1988U172800014}
Linking options:
  • https://www.mathnet.ru/eng/tmf4769
  • https://www.mathnet.ru/eng/tmf/v75/i1/p157
  • This publication is cited in the following 28 articles:
    1. Vlad-Mihai Mandric, Tim R. Morris, Dalius Stulga, “Off-shell divergences in quantum gravity”, J. High Energ. Phys., 2023:11 (2023)  crossref
    2. N. P. Meshcheriakov, V. V. Shatalova, K. V. Stepanyantz, “Higher logarithms and ε-poles for the MS-like renormalization prescriptions”, J. High Energ. Phys., 2023:12 (2023)  crossref
    3. B. Ananthanarayan, M. S. A. Alam Khan, Daniel Wyler, “Chiral perturbation theory: reflections on effective theories of the standard model”, Indian J Phys, 97:11 (2023), 3245  crossref
    4. Antonov N.V. Babakin A.A. Kakin P.I., “Strongly Nonlinear Diffusion in Turbulent Environment: a Problem With Infinitely Many Couplings”, Universe, 8:2 (2022), 121  crossref  isi
    5. L. V. Bork, D. I. Kazakov, “UV divergences, RG equations and high energy behaviour of the amplitudes in the Wess-Zumino model with quartic interaction”, J. High Energ. Phys., 2022:6 (2022)  crossref
    6. N. P. Meshcheriakov, V. V. Shatalova, K. V. Stepanyantz, “Coefficients at powers of logarithms in the higher-derivatives and minimal-subtractions-of-logarithms renormalization scheme”, Phys. Rev. D, 106:10 (2022)  crossref
    7. Sergey N. Solodukhin, “Renormalization group equations and the recurrence pole relations in pure quantum gravity”, Nuclear Physics B, 962 (2021), 115246  crossref
    8. Helias M., “Momentum-Dependence in the Infinitesimal Wilsonian Renormalization Group”, J. Phys. A-Math. Theor., 53:44 (2020), 445004  crossref  isi
    9. M. V. Polyakov, K. M. Semenov-Tian-Shansky, A. O. Smirnov, A. A. Vladimirov, “Quasirenormalizable quantum field theories”, Theoret. and Math. Phys., 200:2 (2019), 1176–1192  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    10. Ivan Chebotarev, Vladislav Guskov, Stanislav Ogarkov, Matthew Bernard, “S-Matrix of Nonlocal Scalar Quantum Field Theory in Basis Functions Representation”, Particles, 2:1 (2019), 103  crossref
    11. Ananthanarayan B., Ghosh Sh., Vladimirov A., Wyler D., “Leading Logarithms of the Two-Point Function in Massless O(N) and Su(N) Models to Any Order From Analyticity and Unitarity”, Eur. Phys. J. A, 54:7 (2018), 123  crossref  isi
    12. N. V. Antonov, P. I. Kakin, “Scaling in landscape erosion: Renormalization group analysis of a model with infinitely many couplings”, Theoret. and Math. Phys., 190:2 (2017), 193–203  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    13. Antonov N.V. Kakin P.I., “Scaling in erosion of landscapes: renormalization group analysis of a model with turbulent mixing”, J. Phys. A-Math. Theor., 50:8 (2017), 085002  crossref  mathscinet  zmath  isi  scopus
    14. L. V. Bork, D. I. Kazakov, M. V. Kompaniets, D. M. Tolkachev, D. E. Vlasenko, “Divergences in maximal supersymmetric Yang-Mills theories in diverse dimensions”, J. High Energ. Phys., 2015:11 (2015)  crossref
    15. L.V. Bork, D.I. Kazakov, D.E. Vlasenko, “Challenges of D=6N=(1,1) SYM theory”, Physics Letters B, 734 (2014), 111  crossref
    16. Christian Friedrich Steinwachs, Springer Theses, Non-minimal Higgs Inflation and Frame Dependence in Cosmology, 2014, 153  crossref
    17. Artur R. Pietrykowski, “Interacting scalar fields in the context of effective quantum gravity”, Phys. Rev. D, 87:2 (2013)  crossref
    18. Christian F. Steinwachs, Alexander Yu. Kamenshchik, “One-loop divergences for gravity nonminimally coupled to a multiplet of scalar fields: Calculation in the Jordan frame. I. The main results”, Phys. Rev. D, 84:2 (2011)  crossref
    19. Andrei O Barvinsky, Alexander Yu Kamenshchik, Claus Kiefer, Alexei A Starobinsky, Christian Steinwachs, “Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field”, J. Cosmol. Astropart. Phys., 2009:12 (2009), 003  crossref
    20. Dmitri I Kazakov, Grigory S.Vartanov, “Renormalizable 1/Nfexpansion for field theories in extra dimensions”, J. High Energy Phys., 2007:06 (2007), 081  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:492
    Full-text PDF :177
    References:82
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025