Abstract:
A generalization of the renormalization-group equations to theories with
Lagrangian of arbitrary form, including unrenormalizable interactions,
is given, in the framework of dimensional regularization, the obtained
equations make it possible to determine the coefficient functions of the
higher poles from the lowest pole or the generalized $\beta$ functions.
Citation:
D. I. Kazakov, “A generalization of the renormalization-group equations for quantum-field theories of arbitrary form”, TMF, 75:1 (1988), 157–160; Theoret. and Math. Phys., 75:1 (1988), 440–442
\Bibitem{Kaz88}
\by D.~I.~Kazakov
\paper A~generalization of the renormalization-group equations for quantum-field theories of arbitrary form
\jour TMF
\yr 1988
\vol 75
\issue 1
\pages 157--160
\mathnet{http://mi.mathnet.ru/tmf4769}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=955670}
\transl
\jour Theoret. and Math. Phys.
\yr 1988
\vol 75
\issue 1
\pages 440--442
\crossref{https://doi.org/10.1007/BF01017179}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1988U172800014}
Linking options:
https://www.mathnet.ru/eng/tmf4769
https://www.mathnet.ru/eng/tmf/v75/i1/p157
This publication is cited in the following 28 articles:
Vlad-Mihai Mandric, Tim R. Morris, Dalius Stulga, “Off-shell divergences in quantum gravity”, J. High Energ. Phys., 2023:11 (2023)
N. P. Meshcheriakov, V. V. Shatalova, K. V. Stepanyantz, “Higher logarithms and ε-poles for the MS-like renormalization prescriptions”, J. High Energ. Phys., 2023:12 (2023)
B. Ananthanarayan, M. S. A. Alam Khan, Daniel Wyler, “Chiral perturbation theory: reflections on effective theories of the standard model”, Indian J Phys, 97:11 (2023), 3245
Antonov N.V. Babakin A.A. Kakin P.I., “Strongly Nonlinear Diffusion in Turbulent Environment: a Problem With Infinitely Many Couplings”, Universe, 8:2 (2022), 121
L. V. Bork, D. I. Kazakov, “UV divergences, RG equations and high energy behaviour of the amplitudes in the Wess-Zumino model with quartic interaction”, J. High Energ. Phys., 2022:6 (2022)
N. P. Meshcheriakov, V. V. Shatalova, K. V. Stepanyantz, “Coefficients at powers of logarithms in the higher-derivatives and minimal-subtractions-of-logarithms renormalization scheme”, Phys. Rev. D, 106:10 (2022)
Sergey N. Solodukhin, “Renormalization group equations and the recurrence pole relations in pure quantum gravity”, Nuclear Physics B, 962 (2021), 115246
Helias M., “Momentum-Dependence in the Infinitesimal Wilsonian Renormalization Group”, J. Phys. A-Math. Theor., 53:44 (2020), 445004
M. V. Polyakov, K. M. Semenov-Tian-Shansky, A. O. Smirnov, A. A. Vladimirov, “Quasirenormalizable quantum field theories”, Theoret. and Math. Phys., 200:2 (2019), 1176–1192
Ivan Chebotarev, Vladislav Guskov, Stanislav Ogarkov, Matthew Bernard, “S-Matrix of Nonlocal Scalar Quantum Field Theory in Basis Functions Representation”, Particles, 2:1 (2019), 103
Ananthanarayan B., Ghosh Sh., Vladimirov A., Wyler D., “Leading Logarithms of the Two-Point Function in Massless O(N) and Su(N) Models to Any Order From Analyticity and Unitarity”, Eur. Phys. J. A, 54:7 (2018), 123
N. V. Antonov, P. I. Kakin, “Scaling in landscape erosion: Renormalization group analysis of a model with infinitely many couplings”, Theoret. and Math. Phys., 190:2 (2017), 193–203
Antonov N.V. Kakin P.I., “Scaling in erosion of landscapes: renormalization group analysis of a model with turbulent mixing”, J. Phys. A-Math. Theor., 50:8 (2017), 085002
L. V. Bork, D. I. Kazakov, M. V. Kompaniets, D. M. Tolkachev, D. E. Vlasenko, “Divergences in maximal supersymmetric Yang-Mills theories in diverse dimensions”, J. High Energ. Phys., 2015:11 (2015)
Christian Friedrich Steinwachs, Springer Theses, Non-minimal Higgs Inflation and Frame Dependence in Cosmology, 2014, 153
Artur R. Pietrykowski, “Interacting scalar fields in the context of effective quantum gravity”, Phys. Rev. D, 87:2 (2013)
Christian F. Steinwachs, Alexander Yu. Kamenshchik, “One-loop divergences for gravity nonminimally coupled to a multiplet of scalar fields: Calculation in the Jordan frame. I. The main results”, Phys. Rev. D, 84:2 (2011)
Andrei O Barvinsky, Alexander Yu Kamenshchik, Claus Kiefer, Alexei A Starobinsky, Christian Steinwachs, “Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field”, J. Cosmol. Astropart. Phys., 2009:12 (2009), 003
Dmitri I Kazakov, Grigory S.Vartanov, “Renormalizable 1/Nfexpansion for field theories in extra dimensions”, J. High Energy Phys., 2007:06 (2007), 081