Abstract:
The approximating Hamiltonian method is used to show that the lattice model gφ4gφ4
with coupling constant g=λ/Ng=λ/N has an exact solution. The thermodynamics of the
phase transition in this model is investigated.
Citation:
N. M. Plakida, N. S. Tonchev, “Exactly solvable dd-dimensional model of a structural phase transition”, TMF, 63:2 (1985), 270–279; Theoret. and Math. Phys., 63:2 (1985), 504–511
This publication is cited in the following 20 articles:
W. F. Wreszinski, V. A. Zagrebnov, “Bogoliubov quasiaverages: Spontaneous symmetry breaking and the algebra of fluctuations”, Theoret. and Math. Phys., 194:2 (2018), 157–188
Alexei L Rebenko, Valentin A Zagrebnov, “Gibbs state uniqueness for an anharmonic quantum crystal with a non-polynomial double-well potential”, J. Stat. Mech., 2006:09 (2006), P09002
Christian Gruber, Valentin A. Zagrebnov, “Random-field quantum spherical ferroelectric model”, Journal of Mathematical Physics, 45:8 (2004), 3310
R. A. MINLOS, A. VERBEURE, V. A. ZAGREBNOV, “A QUANTUM CRYSTAL MODEL IN THE LIGHT-MASS LIMIT: GIBBS STATES”, Rev. Math. Phys., 12:07 (2000), 981
A. Yu. Cherny, “The influence of the critical fluctuations under the structural phase transition on the superconducting pairing”, Theoret. and Math. Phys., 107:1 (1996), 550–559
A. Verbeure, V. A. Zagrebnov, “Dynamics of quantum fluctuations in an anharmonic crystal model”, J Stat Phys, 79:1-2 (1995), 377
A Verbeure, V.A Zagrebnov, “Collective excitations in the anharmonic crystal”, Physica A: Statistical Mechanics and its Applications, 215:3 (1995), 394
H. Chamati, N. S. Tonchev, “Symmetry breaking and long-range order: Ann-component model of a structural phase transition”, Phys. Rev. B, 49:6 (1994), 4311
A. Verbeure, V.A. Zagrebnov, “Quantum critical fluctuations in an anharmonic crystal model”, Reports on Mathematical Physics, 33:1-2 (1993), 265
A. Verbeure, V. A. Zagrebnov, “Phase transitions and algebra of fluctuation operators in an exactly soluble model of a quantum anharmonic crystal”, J Stat Phys, 69:1-2 (1992), 329
N. M. Plakida, A. Yu. Cherny, “Isotopic effect in a superconductor with structural phase transition”, Theoret. and Math. Phys., 84:1 (1990), 758–763
A. O. Melikyan, S. M. Saakyan, “A method of calculating the partition function of a system of phonons with allowance for anharmonicit”, Theoret. and Math. Phys., 75:2 (1988), 531–536
J. L. van Hemmen, V. A. Zagrebnov, “Models of a structural phase transition with general anharmonicity and disorder”, J Stat Phys, 53:3-4 (1988), 835
Andrzej Radosz, “A pseudo-goldstone mode in the exactly solvable model of phase transitions”, Physics Letters A, 127:6-7 (1988), 319
Yu. M. Ivanchenko, A. A. Lisyanskii, A. E. Filippov, “Exactly solvable model of phase transitions”, Theoret. and Math. Phys., 71:3 (1987), 649–656
Yu. M. Ivanchenko, A. A. Lisyanskii, A. E. Filippov, “Fluctuation-induced phase transition of the first kind in an exactly solvable model”, Theoret. and Math. Phys., 72:1 (1987), 786–790
N. M. Plakida, N. S. Tonchev, “Equation of state in an exactly solvable model of a structural phase transition”, Theoret. and Math. Phys., 72:2 (1987), 872–877
N.M. Plakida, A. Radosz, N.S. Tonchev, “Exactly soluble model of phase transition with cubic anisotropy”, Physica A: Statistical Mechanics and its Applications, 143:1-2 (1987), 227
S. Stamenković, N.S. Tonchev, V.A. Zagrebnov, “Exactly soluble model for structural phase transition with a Gaussian type anharmonicity”, Physica A: Statistical Mechanics and its Applications, 145:1-2 (1987), 262
Yu. M. Ivanchenko, A. A. Lisyanskii, A. E. Filippov, “Critical behavior and finite volume”, Theoret. and Math. Phys., 67:1 (1986), 413–418