Abstract:
Nonstationary quantum field scattering theory is constructed for the nonlinear
Schrödinger equation with repulsion. Local fields are introduced through the quantum
Gel'fand–Levitan–Marehenko equations; the equivalence of the field problem to a set of N-particle quantum-mechanical problems with two-body δ-functional potential
(coordinate Bethe ansatz) is not used.
Citation:
I. M. Khamitov, “Quantum field scattering theory for the nonlinear Schrödinger equation with repulsive coupling”, TMF, 63:2 (1985), 244–253; Theoret. and Math. Phys., 63:2 (1985), 486–492
\Bibitem{Kha85}
\by I.~M.~Khamitov
\paper Quantum field scattering theory for the nonlinear Schr\"odinger equation with repulsive coupling
\jour TMF
\yr 1985
\vol 63
\issue 2
\pages 244--253
\mathnet{http://mi.mathnet.ru/tmf4759}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=800067}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 63
\issue 2
\pages 486--492
\crossref{https://doi.org/10.1007/BF01017905}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985AVT5500007}
Linking options:
https://www.mathnet.ru/eng/tmf4759
https://www.mathnet.ru/eng/tmf/v63/i2/p244
This publication is cited in the following 6 articles:
Bo Zhang, Engui Fan, “Riemann–Hilbert approach for a Schrödinger-type equation with nonzero boundary conditions”, Mod. Phys. Lett. B, 35:12 (2021), 2150208
Shuichi Murakami, Frank Göhmann, “Algebraic solution of the Hubbard model on the infinite interval”, Nuclear Physics B, 512:3 (1998), 637
Shuichi Murakami, “New integrable extension of the Hubbard chain with variable range hopping”, J. Phys. A: Math. Gen., 31:30 (1998), 6367
Kei Miki, “Creation/annihilation operators and form factors of the XXZ model”, Physics Letters A, 186:3 (1994), 217
A. N. Kirillov, “T-invariance, CPT-invariance, and local commutativity for the quantum (cosh ?)2-model”, J Math Sci, 40:1 (1988), 6
I. M. Khamitov, “A constructive approach to the quantum (cosh ?)2 model. I. The method of the Gel'fand-Levitan-Marchenko equations”, J Math Sci, 40:1 (1988), 115